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Abstract

Background: Evaluating engagement with an intervention is a key component of understanding its efficacy. With an increasing
interest in developing behavioral interventions in the mobile health (mHealth) space, appropriate methods for evaluating engagement
in this context are necessary. Data collected to evaluate mHealth interventions are often collected much more frequently than
those for clinic-based interventions. Additionally, missing data on engagement is closely linked to level of engagement resulting
in the potential for informative missingness. Thus, models that can accommodate intensively collected data and can account for
informative missingness are required for unbiased inference when analyzing engagement with an mHealth intervention.

Objective: The objectives of this paper are to discuss the utility of the joint modeling approach in the analysis of longitudinal
engagement data in mHealth research and to illustrate the application of this approach using data from an mHealth intervention
designed to support illness management among people with schizophrenia.

Methods: Engagement data from an evaluation of an mHealth intervention designed to support illness management among
people with schizophrenia is analyzed. A joint model is applied to the longitudinal engagement outcome and time-to-dropout to
allow unbiased inference on the engagement outcome. Results are compared to a naïve model that does not account for the
relationship between dropout and engagement.

Results: The joint model shows a strong relationship between engagement and reduced risk of dropout. Using the mHealth app
1 day more per week was associated with a 23% decreased risk of dropout (P<.001). The decline in engagement over time was
steeper when the joint model was used in comparison with the naïve model.

Conclusions: Naïve longitudinal models that do not account for informative missingness in mHealth data may produce biased
results. Joint models provide a way to model intensively collected engagement outcomes while simultaneously accounting for
the relationship between engagement and missing data in mHealth intervention research.

(JMIR Mhealth Uhealth 2017;5(1):e1) doi: 10.2196/mhealth.6474
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Introduction

The success of a behavioral intervention depends upon
participants’ active engagement in treatment. Engagement with
treatment is a multifaceted state with behavioral, affective, and

cognitive components that contribute to maximizing positive
treatment outcomes [1]. Treatment engagement is therefore a
key component of any evaluation of treatment efficacy. With
an increasing interest in developing behavioral interventions in
the mobile health (mHealth) space [2], appropriate methods for
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evaluating engagement in this context are necessary. Indeed,
evaluating engagement in mHealth has been identified as critical
for improving the impact of technology-based mental health
interventions [3,4].

Unlike clinic-based care, mHealth data are often collected much
more intensively [5], allowing more detailed patterns to emerge
in the outcomes of interest [6]. With mHealth interventions,
engagement evaluations usually focus on the behavioral
component and examine various measures of mHealth
intervention usage [3,7]. Outcome data may be available daily
if quantified as app usage, short message service (SMS)
messaging, passive sensing data, response to prompts, or use
of an online portal, for example. More so than in a single time
point, we must consider the nature of missing data in intensively
collected engagement outcomes. Furthermore, compared with
other clinical outcomes, engagement is particularly likely to
have missing data related to the outcome value itself. For
example, if a participant is disengaged in treatment and thus
unlikely to attend a therapy session, there is an increased
likelihood that the participant does not return for a follow-up
visit as well. In the mHealth context, the problem is compounded
in that mode of follow-up data collection and intervention
delivery is often the same. That is, the collection of an
intensively collected engagement outcome like app usage is
directly tied to engagement itself. The availability of engagement
data is likely strongly related to level of engagement with the
intervention. Therefore, missingness in engagement outcomes
should be considered to be nonrandom and nonignorable [8,9].

Longitudinal models such as mixed effects models and latent
growth curve models are robust to random missingness but not
to nonrandom missingness like that likely present in longitudinal
engagement data [8,10]. That is, failure to take into account the
mechanism of missingness results in biased inference about the
outcome [11,12]. Time-to-dropout and longitudinal engagement
are linked processes, and examining either separately is likely
to miss key information. Analyzing intensively collected
engagement therefore requires longitudinal methodology that
takes into account nonrandom missing data. The model must
also accommodate flexible patterns of engagement over time
which can be captured when so many data points are available.
Using a joint model enables simultaneous modeling of the
longitudinal outcome and the dropout mechanism to
accommodate data missing not at random. Models that jointly
evaluate the time-to-event and longitudinal processes have
previously been shown to reduce bias in estimation of the effects
in the longitudinal and time-to-even processes [13-16]. They
have been successfully applied in nonintensive, longitudinal
studies (as in Henderson et al [14], for example). These models,
however, have not previously been applied in intensively
collected data in the mHealth context where they are particularly
relevant.

Recent work has highlighted the need to understand engagement
with mHealth interventions with the goal of designing effective
interventions that meet users’needs [1,7]. Levels of engagement
with an mHealth intervention may change over time and have
important implications for understanding the success of an
intervention. Understanding how engagement changes over
time, factors associated with changes in level of engagement,

and how engagement is related to changes in behavior targeted
by the mHealth intervention could inform intervention tailoring
and improvement. Therefore, accurate estimation of behavioral
engagement over time is essential.

The objectives of this paper are to discuss the utility of the joint
modeling approach in the analysis of longitudinal engagement
data in mHealth research and illustrate the application of this
approach using data from an mHealth intervention designed to
support illness management among people with schizophrenia.
We use data from a large implementation study
(ClinicalTrials.gov NCT02364544) which involved the use of
a smartphone intervention (FOCUS) designed to support illness
management among people with schizophrenia. The study data,
described in detail in a separate article [17], consist of weekly
engagement outcomes. We first introduce both longitudinal and
time-to-event submodels that make up the joint model. We then
illustrate the need for joint modeling by examining the difference
in observed engagement outcome by amount of available data.
After performing a naïve analysis of the data that does not take
into account nonrandom missingness, we analyze and interpret
the engagement data via joint modeling and contrast the results
of the 2 approaches.

Methods

FOCUS Intervention Analysis
The data for this evaluation are from a multisite implementation
project that recruited participants at 10 community mental health
centers and outpatient clinics. Eligible participants were
individuals between the ages of 18 and 60 years with psychotic
disorders who had recently been discharged from a psychiatric
hospitalization. Participants were offered a technology-assisted
relapse prevention program that could last up to 6 months.
Variation in program duration was due to both
participant-related (eg, discontinued phone use and/or study
follow-ups) and project-related (eg, funding ended) factors. As
part of the program, participants were provided with a
smartphone with the FOCUS illness self-management program
installed. FOCUS consists of both prompted (3 times per day)
and self-initiated use where each use starts with a brief
self-assessment and is followed by educational/intervention
content. Program discontinuation was identified when
participants notified study staff of a desire to end participation
and/or returned the study phone. In addition, when participants
enrolled in the last 5 months of the study, they participated for
less than a full 6 months. Finally, when participants stopped
generating phone data, stopped attending in-person services,
and study staff were unable to contact them after repeated
attempts, the study team made the determination of
discontinuation.

The evaluation of engagement with the FOCUS intervention
assessed the decline of engagement over time for this long-term
mHealth intervention as well as factors that may be associated
with differing rates of decline. Curvilinear declines were seen
in each engagement outcome: Days of mHealth Use, Days
Responding to Prompts, Days of On-Demand Use, and Daily
On-Demand Use. In addition, several demographic and
psychiatric variables were found associated with longitudinal
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engagement. Models of time to dropout included gender, age,
and race as potential predictors [17]. In the current
demonstration of joint modeling, we focus on the research
question of change in engagement over time using Days of
mHealth Use per week as the engagement outcome.

Joint Model Set-Up
Joint models are comprised of 2 submodels: the longitudinal
model of a continuous outcome and a time-to-event model.
Using notation from Rizpoulous [18], the observed longitudinal
outcome for individual i, yij is observed multiple times, j=1,...,ni.
The longitudinal submodel is a linear mixed effects model

yi(t)=x′i(t)β+z′i(t)bi+εi(t),

where β is a vector of fixed effect regression coefficients
associated with the predictors xi(t) and the vector bi is a set of
individual-level random effects associated with predictors zi(t).
We assume a normal distribution for both bi and εi(t), (bi~N

(0,D), εi(t)~N(0,σ2)), and also that these 2 random variables are
independent of each other. In this application, the outcome,
yi(t), is engagement measured as weekly mHealth intervention
usage. The research question is whether engagement changes
over the course of the study, so time from randomization, a
quadratic effect of time, and a fixed intercept term are included
in xi(t). Other flexible models of time are possible, but for
simplicity, we focus on this parametric model which appears
to fit the observed trajectory well. For other research questions,
other predictors may be included in xi(t). Due to the focus on
changes over time, we have included only time variables in the
longitudinal model in this application, but it is straightforward
to include additional variables in this model including the
baseline predictors used in the time-to-event model. In zi(t), we
include a random intercept and slope term. The model of
engagement is therefore:

yi(t)=β0+β1t+β2t
2+b0i+b1it+εi(t).

[Equation 1]
We rewrite the above equation in a different format in order to
introduce the term mi(t), which represents the true value of the
longitudinal outcome for individual i at time t, measured without
error:

yi(t)=mi(t)+εi(t).

Time-to-event models are referred to as survival models, as they
are often applied to survival data that is only fully observed in
some participants (those who die while in the study). In the
behavioral sciences, time-to-event models can be applied to
model times to any event where the event may not be observed
in all individuals (eg, time to relapse or time to recovery). When
the study ends prior to an individual’s relapse to smoking, that
participant’s time to relapse is only partially observed. That is,
it is known that he or she remained abstinent for the duration
of the study, but the time of relapse is unknown. These partially
observed times are said to be censored. In the context of
engagement, the partially observed time-to-event data is the
time to dropout. Time-to-dropout data is fully observed among

those participants who drop out prior to the end of study. Time
to dropout is censored when the study follow-up period ends.

The time-to-event submodel is given as a proportional hazard
model [19]:

hi(t|wi,mi(t))=h0(t)exp{γ′wi+αmi(t)}

Importantly, the true value of the longitudinal trajectory, mi(t),
is a predictor in this model representing the assumption that the
longitudinal trajectory influences the risk of dropout. Other
baseline covariates in the model are represented by wi. In the
current application, we include available baseline predictors
that may influence the time to dropout: age, gender, and race
(black, Hispanic, and other with white as the reference group):

hi(t|wi,mi(t))=h0(t)exp{γ1age+γ2male+γ3raceBlack

+γ4raceHisp+γ5raceOth+αmi(t)}

[Equation 2]
The semiparametric proportional hazard model does not require
an assumption about the distribution of the time to event, and
the parameter estimates associated with predictors in the model
are conveniently interpreted as hazard ratios. For example, being
male is associated with a risk of dropout that is exp{γ2} times
the risk of dropout in females.

Estimation of the parameters in each model is performed by
maximizing the log likelihood of the joint distribution of the
longitudinal and time-to-event outcomes [18]. This joint model
is known as a shared parameter model since the parameters that
define the individual-level trajectory (random and fixed effects)
influence both the longitudinal trajectory and the time-to-event
model. Thus, the random effects account for both the association
between the longitudinal and time-to-event outcomes and the
nonindependence of repeated observations within individual
[18].

Joint Modeling of Engagement
Nonignorable missingness, or missingness not at random
(MNAR), occurs when the probability of missingness depends
on unobserved longitudinal responses [8,11]. That is, it occurs
if certain values of a variable are more likely to be missing than
other values. In the case of engagement, it is very likely that
lower levels of engagement are less likely to be observed
because a participant who becomes less engaged over time is
much more likely to drop out of the study. Longitudinal
engagement data is therefore particularly subject to informative
missingness. In the current study, engagement, defined as the
number of days in a week that the participant used the mHealth
intervention, is collected each week for up to 6 months.
Participants provided data for differing amounts of time ranging
from less than 1 month to 6 months or more. A participant who
provided less than 6 months of data is considered to have
dropped out for the purpose of the time-to-event analysis. This
happened for various reasons. In some cases, the reason is
administrative and is likely not informative (ie, value of the
unobserved data should not be viewed as related to the data that
would have been observed); for example, mobile data collection
stopped because the implementation effort came to an end. On
the other hand, there are several participants who stopped
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providing mobile data before the study ended. In the latter case,
we should assume that the value of the engagement outcome
that would have been observed (ie, if the participant provided
data) is lower.

If we knew that all participants who dropped out did so due to
disengagement (eg, stopped participating or using the phone
due to lack of interest in the intervention), it might be reasonable
to impute a 0 value for engagement for all weeks postdropout.
This would be considered a worst-case scenario as it is possible
that had these participants not dropped out they would have had
some engagement even if it were low. However, there are also
cases where dropout is unrelated to engagement, including
administrative dropout or moving out of the area, lost phone,
etc. For these 2 reasons, we should not assume that all missing
data represents the worst case scenario of complete
disengagement. The joint model allows for a relationship
between level of engagement and likelihood of dropout but does
not make assumptions that all missing data represents a complete
lack of engagement. In this way, the joint model flexibly handles
dropout that may or may not be related to engagement.

To implement the joint model, we used the JM package in R
[18] (R Project). The model estimated is described in equations
1 and 2 above. Naïve models for longitudinal outcome and
time-to-dropout were fit via linear mixed effects models and
Cox proportional hazard models, respectively, using the lme
function in the nlme package [20] and the survfit function in
the survival package [21] in R.

Results

Data from 342 participants who used the FOCUS intervention
for at least 1 week were included in these analyses. The mean
age of this sample was 35 (SD 11) years; 62.3% were male,
50.0% were white, 25.2% were African American, 10.8% were
Hispanic, and the remaining 14.0% reported being Asian,
American Indian, Native Hawaiian, or more than one race.

Kaplan-Meier estimates of the time-to-dropout are presented in
Figure 1. Median time-to-dropout in this study was 22 weeks,
but dropout occurred throughout the course of the study. After
a participant dropped out, engagement data were no longer
available.

To illustrate the relationship between level of engagement and
amount of data provided, we grouped participants by duration
of mobile data provided. At each time point the available data
within each group are used to compute a mean engagement.
Figure 2 illustrates that participants who provided the most data
for the longest duration had the highest level of engagement.
Likewise, participants who discontinued using the intervention
after only 1 month had a very low level of engagement during
the time they were actually providing data. One of the benefits
of mixed effects models is that data are not required at all time
points for all participants. This is possible because the model

estimates an individual’s trend over time based on the data from
that individual augmented by the trend of the full sample of
participants [22]. However, this is problematic in the context
of nonignorable missing data. If during the later months, data
are only available from those participants who provided data
for several months and those participants tended to be more
engaged throughout, estimates from a naïve model during the
later months will rely on data provided by highly engaged
participants and therefore overestimate the level of engagement
at those times.

The longitudinal engagement outcome is Days of mHealth Use
per week (range 0-7). Sometimes count variables can be
considered to have a Poisson distribution, but unlike a Poisson
random variable, the distribution of this variable was symmetric
around the mean (not skewed) and somewhat kurtotic. There is
evidence supporting the consideration of Likert scale variables
with multiple categories as continuous variables [23], and mixed
effects models have been shown robust to both non-Gaussian
random effects distributions [24,25] and non-Gaussian residual
errors [26]. We therefore examined the distribution of the
longitudinal engagement variable and the residuals from the
mixed effects model to assess the appropriateness of the
longitudinal submodel for this engagement outcome. Both
indicated that there was not a significant deviation from
normality and the model-based estimates fit the raw data means
well. Table 1 and Figure 3 show the results of a naïve mixed
effects model of engagement not taking into account dropout
alongside the results when the joint model is implemented. The
longitudinal models are similar with significant linear and
quadratic terms showing a significant decline in engagement
over time (negative linear time term) that is steeper toward the
beginning of the study and levels off as the study progresses
(negative quadratic time term). Figure 3, however, shows that
the mixed model estimates a higher level of engagement than
the joint model and this difference is pronounced toward the
end of the study. At baseline, estimated level of engagement in
the 2 models differs only by about 0.2 days per week. By 6
months, however, the model-estimated engagement from the
naïve model is 2.9 days per week of uses, whereas the
model-estimated engagement from the joint model is 1.8 days
per week, a difference of 1.1 days per week.

Examining the naïve time-to-dropout model versus the
time-to-dropout submodel of the joint model that includes
longitudinal engagement as a predictor, we see that no baseline
covariates have a significant effect on time-to-dropout in either
model, but it is clear in the joint model time-to-dropout
submodel there is a strong association between engagement
level and risk of dropout. Specifically, using the mHealth
intervention 1 day more per week is associated with 0.77 (exp
(−0.26)) times the risk of dropout at any time (P<.001). That is
a 23% decreased risk of dropout associated with greater
engagement.
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Figure 1. Kaplan-Meier estimate of probability of duration of mobile data availability over the course of the study.

Figure 2. Mean engagement with mHealth intervention (intervention use) over the course of the study for groups of participants categorized by duration
of mobile data provided.
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Figure 3. Model-based estimated mean engagement with mHealth intervention (intervention use) over the course of the study. Estimates (and 95%
confidence intervals) from the joint model of engagement and time-to-drop-out and from the naïve mixed effects model not accounting for drop-out are
displayed.

Table 1. Model results from separate models of engagement with an mHealth intervention (defined as intervention use) and time to dropout and the
joint model of engagement and time to dropout.

Joint modelSeparate models

P valueParameter estimateP valueParameter estimate

Longitudinal engagement outcome

<.0014.05 (0.10)<.0014.28 (0.13)Intercept (β0)

<.001−0.14 (0.014)<.001−0.13 (0.014)Study week 1 (β1)

.0010.0021 (0.0006)<.0010.0029 (0.0005)Study week 2 (β2)

Time-to-dropout

.87−0.021 (0.13).580.084 (0.14)Age (γ1)

.32−0.10 (0.10).540.073 (0.12)Male (γ2)

.46−0.097 (0.13).670.058 (0.14)Black versus white (γ3)

.410.15 (0.18).510.12 (0.19)Hispanic versus white (γ4)

.490.11 (0.17).100.27 (0.17)Other versus white (γ5)

<.001−0.26 (0.022)Longitudinal engagement association (α)

Discussion

Examining intensively collected engagement with the mHealth
behavioral intervention made clear that level of engagement
varied by amount of available mobile data. Naïve mixed effects
models of engagement showed a slight decrease over the
6-month course of the study, but these results weight data from
highly engaged participants toward the end of the study period
leading to possibly biased results. Joint modeling of the linked
processes of engagement and time to dropout allowed for an
examination of engagement over time that more appropriately

accounted for missing engagement data. These model results
indicated a greater decline in engagement with the mobile
intervention over time in the population. Furthermore, the
time-to-event submodel of the joint model specifically quantifies
the association between longitudinal engagement and dropout.
The association is seen to be statistically significant, with those
who are more engaged significantly less likely to drop out. And
conversely, those who are less engaged are much more likely
to drop out and therefore much more likely to yield missing
engagement outcome data.
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The present analysis represents just 1 example of implementing
a joint model and comparing it to a naïve mixed model for
engagement with an mHealth intervention. However, similar
patterns between models would be expected assuming an
association between increased likelihood of missingness and
lower engagement. That is, the joint model results will likely
estimate lower levels of engagement than a naïve mixed model.
The magnitude of the difference between results from a mixed
model and longitudinal submodel of a joint model depends on
the association between engagement and missing data in the
particular dataset being analyzed, the level of missing data, and
the pattern of missingness over time. Therefore, a comparison
of models from a different dataset may produce different results.

While missing data in the context of longitudinal studies is
always a concern, often this missingness can be handled with
the usual longitudinal modeling techniques such as mixed effects
models. Importantly, with engagement data, the assumptions
necessary for valid inference from typical models are likely not
met since level of engagement may be related to likelihood of
missing data. In this case, typical longitudinal models produce
biased results. It is therefore especially important to account
appropriately for missing data in analyses of engagement
outcomes. With mHealth interventions, engagement is collected
more intensively and often in the same mode as treatment is
delivered so addressing missing engagement data is especially
important. In the current investigation, we focus only on the
behavioral component of engagement as this is frequently
measured intensively via mobile devices and therefore most
relevant for the modeling concepts presented.

Joint models are straightforward to implement with the JM
package in R and offer flexibility in modeling the longitudinal
trajectory over time. While in the current application we only
used parametric models of time (quadratic), more flexible
patterns of change over time can be accommodated by using
spline basis terms in the longitudinal submodel of the joint
model. Parametric assumptions on the time-to-event data are
also not required.

There are other types of shared parameter models that model
the longitudinal and/or time-to-event data differently with
respect to specifying the individual-level trends in the
longitudinal outcome, specifying the dependence of the
time-to-event processes on these individual-level trends, varying
the form of the time-to-event model, and approaching the
estimation of model parameters [12]. The shared parameter
model implemented in the current application is that proposed
by Wulfsohn and Tsiatis [16]. Other methods for modeling
longitudinal data with dropout, including random coefficient
selection models and random coefficient pattern mixture models,
are summarized in Little [27]. Pattern mixture models [22,28]
estimate separate longitudinal trajectories by groups defined by
dropout time and summarize the trajectory for the population
by averaging the groups. When a limited number of dropout
patterns are present to define the groups or when the goal is to
examine trajectories separately by time of dropout, pattern
mixture models may be most appropriate and also can be easily
implemented. Related to pattern mixture models, the terminal
decline model [29] is geared toward examining the longitudinal
trajectory just prior to dropout or death. Selecting an appropriate
model to accommodate nonignorable missingness is important
and should be geared toward the research question. The shared
parameter joint model implemented here is especially
appropriate for intensively collected longitudinal data because
the focus is on examining the longitudinal trajectory of the
population over time, the pattern of engagement can be modeled
flexibly, grouping individuals by dropout time is unnecessary,
and no assumption is made about the distribution of the time to
dropout.

Assessing engagement with mHealth behavioral interventions
is crucial to evaluating their efficacy. Modeling intensively
collected engagement should be done via models that
appropriately account for the potential of nonignorable missing
data. Using the shared parameter joint model implemented in
the JM package in R is a straightforward way to flexibly model
intensively collected engagement data like that from mHealth
interventions and to examine the relationship between
engagement and missing data.
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