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Abstract

Background: Mobile health (mHealth) apps provide an opportunity for easy, just-in-time access to health promotion and
self-management support. However, poor user engagement with these apps remains a significant unresolved challenge.

Objective: This study aimed to assess the effect of sending versus not sending a push notification containing a contextually
tailored health message on proximal engagement, measured here as self-monitoring via the app. Secondary aims were to examine
whether this effect varies by the number of weeks enrolled in the program or by weekday versus weekend. An exploratory aim
was to describe how the effect on proximal engagement differs between weekday versus weekend by the time of day.

Methods: The study analyzes the causal effects of push notifications on proximal engagement in 1255 users of a commercial
workplace well-being intervention app over 89 days. The app employs a microrandomized trial (MRT) design to send push
notifications. At 1 of 6 times per day (8:30 am, 12:30 pm, 5:30 pm, 6:30 pm, 7:30 pm, and 8:30 pm; selected randomly), available
users were randomized with equal probability to be sent or not sent a push notification containing a tailored health message. The
primary outcome of interest was whether the user self-monitored behaviors and feelings at some time during the next 24 hours
via the app. A generalization of log-linear regression analysis, adapted for use with data arising from an MRT, was used to examine
the effect of sending a push notification versus not sending a push notification on the probability of engagement over the next 24
hours.

Results: Users were estimated to be 3.9% more likely to engage with the app in the next 24 hours when a tailored health message
was sent versus when it was not sent (risk ratio 1.039; 95% CI 1.01 to 1.08; P<.05). The effect of sending the message attenuated
over the course of the study, but this effect was not statistically significant (P=.84). The effect of sending the message was greater
on weekends than on weekdays, but the difference between these effects was not statistically significant (P=.18). When sent a
tailored health message on weekends, the users were 8.7% more likely to engage with the app (95% CI 1.01 to 1.17), whereas
on weekdays, the users were 2.5% more likely to engage with the app (95% CI 0.98 to 1.07). The effect of sending a tailored
health message was greatest at 12:30 pm on weekends, when the users were 11.8% more likely to engage (90% CI 1.02 to 1.13).

Conclusions: Sending a push notification containing a tailored health message was associated with greater engagement in an
mHealth app. Results suggested that users are more likely to engage with the app within 24 hours when push notifications are
sent at mid-day on weekends.
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Introduction

Background
Evidence demonstrates that providing engaged individuals with
a digital behavior change intervention improves health outcomes
[1-3]. In recent years, owing to increasingly ubiquitous
smartphone ownership at a population level and rapidly reducing
digital divides [4], smartphone apps have emerged as an
important channel for health behavior interventions. As
individuals are in the vicinity of their smartphone most of the
time, smartphone apps can be used to sense users’ everyday
context and offer behavioral interventions at the most suitable
moments. Unlike the traditional health care system, most mobile
apps are inexpensive and easy to access on demand. They
overcome demographic, socioeconomic, and geographical
barriers to access by being able to reach populations that were
unreachable until recently [5]. Consequently, smartphone health
apps are now widely recognized as a public health promotion
resource. For example, the World Health Organization Mental
Health Action Plan 2013-2020 recommends “the promotion of
self-care, for instance, through the use of electronic and mobile
health technologies” [6]. Websites of prominent and large public
health organizations (such as the UK National Health Service
[NHS] website NHS Choices or Reachout Australia [7]) have
also begun formally endorsing and recommending effective
apps.

A pressing concern for the field of mobile health (mHealth),
however, is the high rate of disengagement among individuals
who choose to install an app. After installing a mobile app, over
80% of app users use it only once and eventually delete it [8].
Only 5% of the apps continue to be used beyond a month [9].
Even among those who use the apps, the amount of use depends
on an individual’s health and behavioral characteristics [10-12].

The lack of participant engagement is not unique to mHealth
apps. In fact, traditional Web-based interventions observe
decreases in engagement over time, with large proportions of
participants dropping out or discontinuing the use of the app
completely [13]. Although when compared with traditional
internet interventions, the more recent smartphone app
interventions have the potential to reach participants at moments
when they are most likely to engage. It is disconcerting that
similar underlying disengagement patterns are emerging even
with more advanced technology. Consequently, despite the
potential of smartphone apps, lack of participant engagement
with apps, which is critical to the success of interventions
focused on health behavior change, is of major concern. Given
the fast pace of smartphone health app development, there is a
pressing need for novel research to enhance engagement with
these apps.

Effective engagement with digital health apps is particularly
critical when this engagement is part of the health intervention,
as opposed to simply opening the app. For example, engagement

might be classified as use of the app to self-monitor health
behaviors and feelings; self-monitoring has been demonstrated
to have a positive impact on well-being and improve health
behaviors [14,15]. Engagement could also be the subjective
quality of user experiences with the app, which can be
influenced by design elements [16]. Individual characteristics
such as age, education levels, and state of health are known to
equally influence the adoption of mHealth apps, in addition to
factors such as being female, younger, higher education levels,
and lower body mass index increasing the odds [17,18]. Another
factor affecting the dropout in mobile app use could be the
timing of intervention offered. For example, participants in an
app study reported they were likely to drop out if the
intervention did not meet their expectations and needs at the
right time [19]. On the other hand, some qualitative research
suggests that individuals tend to use app-based interventions in
brief bursts only, often when needed and in a fleeting manner
[20,21]. In this context, it could be argued that even short-term
or varying intensity patterns of use with app-based behavior
change interventions could be beneficial to users. For example,
in the case of a self-monitoring app intervention, some
individuals might monitor more frequently than others, but
irrespective of how often they engage, every act of
self-monitoring enables users to learn some strategies that can
be practiced to improve behaviors without additional guidance
from the intervention. Thus, every time a user opens and
interacts with the intervention activity of the app, they are
effectively engaged.

As mobile phones are usually switched on and nearly always
with users, the majority of app-based interventions adopt
prompting as a strategy to encourage interaction and
engagement. In apps, prompts are implemented as push
notifications, which appear on the smartphone screen at a
programmed time. Both the content and timing of a push
notification are programmable. Consequently, smartphone users
receive a deluge of push notifications daily, approximately 50
time-varying notifications, from a diverse set of apps [22]. This
sheer volume of notifications throughout the day has the
potential to further exacerbate disengagement with the apps. A
few studies that observed how users responded to push
notifications received on their smartphone over the course of a
day suggest that users are most likely to ignore a vast majority
of notifications even when the notifications come from apps of
importance to them [23,24]. There are also concerns that
receiving too many notifications might increase users’
inattention and reduce well-being [25].

Due to advances in smartphone-sensing capabilities along with
algorithmic advances, apps can now utilize users’ context, for
example, location, social setting, and activity level to determine
the most opportune times to send push notifications. Studies
suggest that users are receptive to notification interruptions at
convenient times [26-28]. Within the human-computer
interaction field, interruptibility research has emerged, with
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many studies focused on understanding and anticipating suitable
moments for interruption [29-32]. However, most studies
concerning the effects of push notification interruptions on
engagement are observational studies based on small
convenience samples with neither randomization nor control
conditions. Thus, although rapid advances are being made in
devising algorithms to predict when to interrupt users, because
of the lack of appropriately designed studies, there is a
significant gap in knowledge concerning when particular types
of interruptions are effective.

In contrast, the fields of public health and psychology contain
several well-designed randomized controlled trial studies to
evaluate text-messaging interventions that are similar to push
notification interventions in mHealth apps [33,34]. Furthermore,
a recent study randomized participants into 3 different conditions
based on the different approaches used to determine the timing
of push notification [35]. These studies, using baseline
randomization of individuals into different conditions, were
designed to compare between conditions in terms of a distal
outcome (such as the percentage of notifications viewed or
overall usage). However, baseline randomization is not suitable
for addressing questions comparing prompts at different times
or comparing a prompt (vs no prompt) in terms of their effect
on near time, proximal engagement, and the conditions in which
a prompt would be more or less beneficial. Indeed, on any given
day, users may be concerned with the contingencies and
demands of the day so that even a self-determined user may not
think or remember to access support on the app.

To our knowledge, this is the first study focusing on the effects
of push notifications containing contextually tailored health
messages on near-time, proximal engagement with the app.
Here, engagement in response to a prompt is operationalized as
the user completing the self-monitoring intervention activity in
the app within 24 hours of receiving the push notification (as
opposed to just opening the app). This study examines data
collected from a microrandomized trial (MRT) [36] implemented
within the JOOL app, a commercial workplace well-being
intervention product [37]. In an MRT, each user is randomized
multiple times over a period of weeks and months. In the JOOL
app, push notifications may be randomized at each of 6 time
points per day. This repeat-randomization design adjusts for
potential biases that might arise from within and between the
individual factors. For instance, randomizing the decision to
send a push notification at a time point ensures that within- and
between-user factors contributing to day-to-day variations in
engagement are balanced approximately evenly across both
push notification and no push notification conditions. The
specific primary and secondary aims and hypotheses of this
study are presented in the next section.

Aims and Hypotheses
The specific primary and secondary aims and hypotheses are
as follows:

Primary Aim
To test whether sending a push notification containing a
contextually tailored health message versus not sending push
notification (in moments of availability) results in an increased

likelihood of proximal engagement with the app (ie, the user is
self-monitored via the app at some point in the next 24 hours).

Hypothesis
We hypothesize that on an average, sending a push notification
containing a contextually tailored message will lead to a greater
likelihood of proximal engagement with the app as compared
with not sending the push notification.

Secondary Aim 1
To test whether the effect of sending a push notification
containing a tailored message (vs not sending a push
notification) on the likelihood of proximal engagement with the
app differs by week in the study (there are approximately 12
weeks in the study).

Hypothesis
We hypothesize that the effect of sending a push notification
containing a tailored message will differ by week in the study.
Specifically, we hypothesize that the effect will be greater earlier
in the study than later in the study.

Secondary Aim 2
To test whether the effect of sending a push notification
containing a tailored message (vs not sending a push
notification) on the likelihood of proximal engagement with the
app differs by weekdays (Monday to Friday) versus weekends
(Saturday or Sunday).

Hypothesis
We hypothesize that the effect of sending a push notification
containing a tailored message will differ by weekdays versus
weekends. Specifically, we hypothesize that the effect will be
greater when the push notification is on weekends than on
weekdays.

The exploratory aim focused on whether the effect of sending
a push notification containing a tailored message (vs not sending
a push notification) on the likelihood of proximal engagement
with the app differs by the time of day within
weekday-versus-weekend.

For all aims, the effect of sending a push notification is defined
more precisely as the effect of sending a push notification (and
not sending a subsequent push notification over the next 24
hours) versus not sending a push notification now or over the
next 24 hours.

Methods

Intervention and Push Notification
The JOOL app is a smartphone-based behavioral intervention
using self-monitoring and feedback strategies to help users find
their purpose in life and develop the energy and willpower they
need to live in accordance with their purpose every day. To
engage in self-monitoring activity, users open the app and record
on a scale of 0 (worse) to 100 (best) values for daily energy,
willpower, sleep, presence, physical activity, creativity, eating,
and perceived alignment with the community, work, and
personal purposes. Interventions that assist individuals to record
and track these behaviors and feelings and assist with behavior
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modification feedback are demonstrated to have a positive
impact on well-being and improve health behaviors [14,15].

The app sends time-varying push notifications containing
tailored health messages to provide feedback related to behavior
modification and to encourage interaction with the app. The
content of the feedback messages in the push notifications is
drawn from a library of messages curated by JOOL to motivate,
facilitate, and maintain behavior change. The content of
messages is related to the purpose, energy, willpower, sleep,
presence, activity, eating well, and creativity topics. The
messages were created via tailoring strategies, are personalized,
and the content was organized by types to both enhance message
processing and interaction with the app [38] (see Figure 1).
JOOL uses the answers from the self-monitoring along with
environmental information (day of the week, temperature, and
weather) to tailor the messages. Furthermore, to increase users’
attention, interest, and motivation to process information, the
feedback messages offered in the push notifications were sent
in a context that is meaningful to the recipient. To contextually
tailor, first, there was a determination of the user’s context at
the selected time point when the app is programmed to send a
message. The context is determined by the user’s current and
past data from the self-monitoring, other app usage, and
environmental data such as the time of day and day of week.
Next, the tailoring algorithm identified a subset of messages
from the library that are meaningful to the users’ context at the
decision time and randomly selects one of the messages to send
to the user. For example, a user whose self-monitoring data
indicate low energy is more likely to receive a message with a
tip: “(...) Setting aside some time for meditation might give you
more energy”; if the self-monitoring data includes reports of
low willpower, the user might be sent a message such as: “(...)
Little bursts of physical activity do bolster willpower.”

When a user opens the app, either prompted or unprompted,
they are always required to first complete the self-monitoring

intervention activity in the app. Effective engagement in
response to a push notification was operationalized as interacting
with the self-monitoring intervention activity in the app within
the next 24 hours.

Microrandomized Trial Design
The implementation of the MRT design for sending push
notifications in the app is shown in Figure 2. Push notifications
could be sent at 1 of 6 chosen time points throughout the day,
and a user could either receive or not receive a push notification
at a chosen time point. The insights JOOL Health has on its
user group, who are primarily office workers in a 9 to 5 work
environment, informed which time points are appropriate for
sending prompts. During a typical day, these time points
correspond to contexts such as before work (8:30 am), during
lunch (12:30 pm), early evening at home (5:30 pm, 6:30 pm,
and 7:30 pm), and just before bed (8:30 pm). These are times
when an office worker is likely to be less busy and thus more
receptive. As prior research suggests engagement typically
occurs during nonworking hours, more time points outside work
hours were included [39,40]. Multiple convenient time points
were chosen to ensure the timing of prompts was uniformly
distributed throughout the day. Specifically, at each time point
on each day, a user is first classified as being available or
unavailable to receive push notifications. Unavailable users
advance to the next of the 6 time points on the same day at
which time their availability will be assessed again. When a
user was available at a selected time point, they were
randomized to either consider that time point for a push
notification randomization or to advance to the next time point.
At each considered time point, users were randomized to either
receive or not receive a push notification containing a tailored
health message with a 50% probability. Once a time point is
considered, the user is then considered unavailable for the
remainder of the day.

Figure 1. Different types of contextually tailored messages.
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Figure 2. Micro-randomized trial design in JOOL app. Each decision point j (i)=(d, t) where i=1, 2,…,534, corresponding to a time of day t=1,2,…,6;
8:30 am, 12:30 pm, 5:30 pm, 6:30 pm, 7:30 pm, 8:30 pm with in a day d=1, 2, …, 89.

Data Gathering Process
Microrandomizations are a standard part of the JOOL app’s
quality improvement process. The MRT being reported in this
paper, in particular, is part of the JOOL’s effort to improve the
quality of JOOL’s “push notifications” feature. This quality
improvement trial was rolled out to users in March 2017. All
individuals who had the app installed on their phone and had
push notifications enabled between March 2017, when the
randomization software was rolled out, and August 2017 were
included in this study. Users who did not use the app or used it
just once after downloading the app were still included if they
met the above eligibility criteria. Users who disabled push
notification during the study were considered eligible until the
next decision in the trial and then unavailable unless and until
they re-enabled the push notifications.

A collaboration agreement was established between researchers
and JOOL Health Inc. to undertake this study. The design of
this study and analysis processes were carried out according to
terms of service and privacy policy statements in the JOOL app,
consented by the users when they created their account. For this
study, a limited, nonidentifiable dataset was made available to
fit the preplanned analytic models. The dataset included the
MRT details and information about how and when users
interacted with the app but did not include any of the details the
users entered in the app. The data made available for analysis
were anonymous, nonidentifiable, and housed only on JOOL
Health’s servers. Institutional review board letters from both
the University of Michigan and Flinders University are available.

Outcome Measure
For all aims, the outcome is user engagement with the app,
which we operationalize as whether or not the user charts in the
app over the next 24 hours (as this is the first and most important

interaction a user engages in after opening the app); this is a
binary, longitudinal outcome. A total of 24 hours was allowed
after a push notification for a user to respond because the
self-monitoring is designed to be done daily; the self-monitoring
questions concern behaviors and feelings over the prior 24-hour
period. The primary aim tests whether there is an average effect
of sending a push notification containing tailored health message
versus not sending a push notification. This main effect is an
average effect over time and over any other baseline or
time-varying (eg, contextual) characteristics of the user. The
secondary aims 1 and 2 focus on examining whether the effect
of sending the push notification with a tailored health message
differs by time (we examine week-of-study and weekdays vs
weekends).

Availability
To mitigate the risk of users either turning off notifications or
deleting the app due to receiving too many push notifications,
users were classified as either “available” or “unavailable” at
each time point, and only those time points when users were
“available” were considered for push notification decision.
Several rules were applied to determine availability. First, a
user is “available” to receive only 1 push notification decision
in a day, so after a push notification decision was made at a
time point, users were classified as “not available” for
consideration at subsequent time points in that day. Second,
during weekends, users were considered as “unavailable” before
noon. Finally, frequent prompts could potentially alienate
inactive users, and result in them either disabling notifications
or uninstalling the app [20,40]. To mitigate this risk, a user was
also considered either “available” or “unavailable” on a day
based on their longitudinal disengagement, classified as the
number of days of inactivity with the app. Users who used the
app less frequently were “unavailable” to receive push
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notifications on a greater number of days compared with those
who used the app more often. JOOL identified 4 distinct types
of app users based on the clusters observed within the entire
population of app users’ inactivity patterns (see Table 1). The
majority of individuals who stopped using the app were clustered
within 0 to 9 days, followed by 10 to 29 days, and the remainder
in 30+ days. As shown in Table 1, as the number of inactive
days with the app increased, the number of “unavailable” days
increased. This corresponds to the decrease in frequency of
prompts received as users become inactive over longer periods.
Users who stopped using the app recently (2 to 9 days), or in
the early phases of disengagement, were “unavailable” for 2
days after a previous push notification decision. On the other
hand, users who were inactive over 30 days were “unavailable”
for 15 days after a previous notification decision. Similarly,
during the first 2 days when the majority of users are most active
with the app, users received prompts less frequently as they are
already motivated and interacting with the app.

Data Analytic Plan
To analyze the data, we used a generalization of log-linear
regression analysis specifically developed to ensure unbiased
estimation of the causal effects of a time-varying treatment (ie,
sending a push notification vs not) on a time-varying outcome
(ie, charting over the next 24 hours) in mHealth settings. The
method is a generalization of the approaches described in
Boruvka et al (2016) and Dempsey et al (2017), with the use of
a log-link function to accommodate the binary outcome [41,42].
These analyses pool time-varying, longitudinal data across all
study participants. A separate analysis was conducted for each
aim; each analysis involved prespecifying 2 sets of covariates
before conducting the analyses. The first set of covariates, X,
is used to examine moderation of the causal effect of sending
a push notification with a tailored health message versus not
sending a push notification (in moments of availability). The
second set of control covariates (which can be time-varying) is
a set of covariates that are expected to be highly correlated with
app use in next 24 hours; these covariates are chosen to reduce
the noise (ie, increase statistical efficiency) when assessing the
effect of the push notification with a tailored health message
versus none.

The causal effect is expressed on the “risk-ratio” scale, that is,
on a scale that measures the probability (“risk”) of completing

the monitoring activity in the next 24 hours when a push
notification is sent in a moment of availability, divided by the
probability of completing the monitoring activity in the next 24
hours when a push is not sent in a moment of availability. If
sending a push notification has a causal effect on the probability
of completing the monitoring activity in the next 24 hours, the
risk ratio will be different from 1. If sending a push increases
the probability of completing the monitoring activity in the next
24 hours, the risk ratio will be greater than 1. Specifically, for
each analysis, we modeled the log of the risk ratio linearly in

X, using XT beta, where the dimension of the unknown vector
of parameters beta is the same as the number of covariates in
X.

Table 2 provides the covariates in X corresponding to each aim
and the hypothesis test corresponding to each aim. The covariate
week in study is coded as 0 for the first week, 1 for the second
week, and so on up to 12 for the final week of the study. The
covariate which day is a binary variable. It has a value of 1 when
the decision time is on a Monday to Friday, or 0 when the
decision time is on a Saturday or Sunday. Each of the 3
preplanned hypothesis tests used a Wald statistic to test the null
hypothesis that all the terms listed in column 3 of Table 1 are
0. For the primary and secondary aims, we set the type-1 error
to 5%. All SEs were adjusted for within-person correlation in
the binary outcome over time. We also reported estimates (and
a 95% CI) of the average causal effect of sending a push
notification (vs not) on the risk-ratio scale.

In the exploratory aim, we explored the effects of the push
notification with a tailored health message by the time of day
within weekday (vs weekend). Here, the time-of-day covariate
has 6 possible levels corresponding to 6 possible decision points
at which a push notification could be sent within a day: 8:30
am, 12:30 pm, 5:30 pm, 6:30 pm, 7:30 pm, and 8:30 pm. As
these are exploratory analyses, we did not conduct hypothesis
tests (ie, no P values will be reported for the exploratory aim).
Instead, for these exploratory analyses, we provided plots of
the model-based estimates of the effect of the push notification
with a tailored health message versus no push notification (on
the log of the risk-ratio scale) across different levels of the X
covariates and report point-wise 90% CI around these estimates.

Table 1. Relationship between engagement patterns and push notification frequency.

Number of days to wait before sending a push notification (frequency of notification)Number of days since user last engaged with the app

3 (twice a week)<2

2 (2-3 times a week)2-9

6 (weekly)10-29

15 (fortnightly)30+
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Table 2. Covariates used to model the causal effect of sending a prompt versus not for each of the three aims.

Hypothesis testCovariates, XAim

InterceptInterceptPrimary aim

Week in studyIntercept (week in study)Secondary aim 1

Day (weekday or weekend)Intercept, day (weekday or weekend)Secondary aim 2

For the primary and both the secondary aims, the following 5
control covariates were used: (1) week in study; (2) time since
last chart; (3) pushed indicator, an indicator for whether a push
has been sent in the past (once a push is sent, this indicator has
a value of 1.0 for all remaining time points, otherwise it has a
value of 0); (4) push success ratio, that is, total number of charts
within 24 hours of receiving a push notification any time in the
past divided by the total number of push notification sent any
time in the past (note that push success ratio is nested within
pushed indicator, ie, if no push notifications are sent in the past,
the value is 0); and (5) has charted 10 time s, that is, whether
the user has charted at least 10 times, which corresponds to the
number of times a user must engage to unlock insights feature
within the app. For the secondary aim 2, we additionally
adjusted for which day (weekday vs weekend) as a control
covariate.

Results

Participant Characteristics
During the study period between March 2017 and August 2017,
a total of 3300 users had the app installed on their phone, but
61.96% (2045/3300) of the users did not have push notifications
enabled and were thus excluded from this study. The
deidentified dataset analyzed in this study contained records
from each of the 1255 eligible app users across 534 decision
points (6 times per day over 89 days).

Among the study sample, 63.97% (790/1235) were females,
28.86% (357/1237) were aged under 30 years, 42.44%
(525/1237) were aged between 30 and 50 years, and the
remaining 28.70% (355/1237) were older than 50 years. Using
a body mass index cut-off of 25 or higher, 52.88% (652/1233)
of the participants were either overweight or obese. Figure 3
shows the percentage of individuals available by day in the
study. On an average, over the duration of the study, JOOL app
users were available approximately 20% of the time. The results
for each of the aims are presented below.

Figure 3. Percentage of individuals available by day in study.
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Primary Aim Analysis
There is sufficient evidence to reject the primary aim null
hypothesis that states there is no effect of the push notification
with a tailored health message (P<.05, Table 3). On the basis
of the results of this analysis, it is estimated that on an average,
individuals are 3.9% more likely to chart in the next 24 hours
when a notification with a tailored health message is sent versus
when a push notification is not sent (95% CI 1.01 to 1.08).

Secondary Aim 1 Analysis
On the basis of the results of this analysis (Table 4), there is
insufficient evidence to reject the null hypothesis that the effect
of a push notification containing a tailored health message versus
not pushing a notification does not differ by week in study
(P=.84). Figure 4 shows the estimated effects by week in study
on the log risk-ratio scale (left) and risk-ratio scale (right) based
on this model.

Table 3. Overall effects of the push notification with a tailored health message (primary aim).

P value95% CISECoefficientEffect

  Causal

.0470 to 0.080.020.04Decision to push (=yes)

  Control covariates

−0.38 to −0.260.03−0.32Intercept

−0.01 to 0.010.010.00Week in study

−0.31 to −0.130.05−0.22Days since chart

−1.15 to −0.670.12−0.91Pushed indicator

0.54 to 0.970.110.75Pushed indicator × push success ratio

0.07 to 0.260.050.16Has charted 10 times

Table 4. Effects of push notification by week in the study (secondary aim 1).

P value95% CISECoefficientEffect

    Causal

.14−0.01 to 0.100.030.04Decision to push (=yes)

.84−0.01 to 0.010.010Decision to push (=yes) x week in study

    Control covariates

−0.38 to −0.260.03−0.32Intercept

−0.01 to 0.010.010Week in study

−0.31 to −0.130.05−0.22Days since chart

−1.15 to −0.670.12−0.91Pushed indicator

0.54 to 0.970.110.75Pushed indicator x success ratio

0.07 to 0.260.050.16Has charted 10 times
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Figure 4. Effects of push notification over course of the trial.

Secondary Aim 2 Analysis
There is insufficient evidence to reject the null hypothesis that
the weekend and weekday effects are not different from each
other (P=.18, Table 5). However, the effect of a push notification
with a tailored health message versus no push notification is
estimated to be somewhat larger on weekends than on weekdays.

Specifically, it is estimated that, on weekends, individuals are
8.7% more likely to chart in the next 24 hours when pushed a
tailored health message versus when not pushed (95% CI 1.01
to 1.17). Whereas, on weekdays, individuals are 2.5% more
likely to chart in the next 24 hours when pushed a tailored health
message versus when not pushed (95% CI 0.98 to 1.07).

Table 5. Effects of push notification by weekend versus weekday (secondary aim 2).

P value95% CISECoefficientEffect

    Causal

.030.007 to 0.1560.040.084Decision to push (=yes)

.18−0.145 to 0.0260.044−0.059Decision to push (=yes) x which day

    Control covariates

−0.477 to −0.3130.042−0.396Intercept

0.027 to 0.1410.0290.084Which day

−0.014 to 0.0090.006−0.002Week in study

−0.311 to −0.1290.046−0.220Days since chart

−1.140 to −0.6570.123−0.898Pushed indicator

−0.540 to 0.9740.1110.757Pushed indicator x push success ratio

0.068 to 0.2590.0490.164Has charted 10 times
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Exploratory Aim Analysis
In this analysis, we examined the effect of a push notification
containing a tailored health message versus no push notification
by the time of day. There are 6 times of day: 8:30 am, 12:30
pm, 5:30 pm, 6:30 pm, 7:30 pm, and 8:30 pm; on weekends,
no notifications are pushed at 8:30 am. There are 2 parts to this
analysis. In part 1, we examined whether the effect of the push
notification varies by the time of the day. In part 2, we examined
whether the effect of the push notification varies by time of day
within weekend versus weekday.

Part (1)
The data indicate that the largest effect of the push notification
containing a tailored health message is at 12:30 pm (Figure 4).
Specifically, it is estimated that when the notification is pushed
at 12:30 pm (vs not pushed at 12:30 pm), individuals are 8.8%
more likely to chart in the next 24 hours (90% CI 1.04 to 1.15).

Part (2)
During weekdays, the effect of the push notification was greatest
at 12:30 pm (Figure 5). Specifically, it is estimated that when
a tailored health message is pushed at 12:30 pm (vs not pushed
at 12:30 pm), individuals are exp (0.071)=1.074 times as likely
(ie, 7.4% as likely) to chart in the next 24 hours (90% CI 1.02
to 1.13). During weekends, the effects were greatest at 12:30
pm and 7:30 pm. Specifically at 12:30 pm on weekends, the
risk ratio is 1.118 or 11.8% are more likely to chart in the next
24 hours (90% CI 1.02 to 1.23). The effect is similar at 7:30
pm on weekends. Figure 6 shows the effects by time of day and
weekday versus weekends (with 90% confidence limits). These
results are congenial with the results of the secondary aim 2
analyses, which suggested that the effects were somewhat
stronger on weekends than on weekdays.

Figure 5. Effects of push notification over different times in a day.

Figure 6. Effects of push notification over different times in a day (weekday and weekends).
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Discussion

Principal Findings
The results indicate that pushing a notification with a tailored
health message impacts near time, proximal engagement with
the self-monitoring activity in the app. The effect of the pushed
notifications is sustained over time, suggesting that push
notifications containing tailored health messages can attenuate
the rate at which users disengage. Both the positive effect of
notifications [35,43], as well as the decline in effects over time
on engagement have been noted in prior research [43]. Finally,
the results suggest that push notifications with a tailored health
message result in higher rates of engagement during weekends
and according to time at mid-day. This is contrary to the lack
of effect of the timing of notifications on engagement observed
in prior research [35]. Substantial differences in trial design and
relatively small sample sizes may explain why these effects
were not observed in previous studies.

Implications
The findings suggest that users are more likely to engage with
the app in the 24 hours following a push notification containing
a tailored health message compared with no push notification.
However, the effects are relatively small, with only a 3.9%
greater likelihood of engaging with the app in the next 24 hours.
The likelihood of users viewing the notifications within 24 hours
is very high. Previously, it has been noted that the probability
of users clicking a notification increases from 50% within 30
seconds to 83% in 5 min [24]. This suggests that prompts would
have captured users’ attention most of the time, but their
attention would have translated to engagement with the
self-monitoring activity in the app less frequently. On the other
hand, even small effects on engagement can be of substantial
benefit at the population level, given the scalability of app-based
resources. Similarly, the effects may be small because not all
push notifications, even when messages are contextually tailored
and personalized, are likely to be persuasive to all users at all
times. In the design of this study, push notifications were sent
at different times and days of the week when users are likely to
be in different contexts. As a result, over the course of the trial,
some users could have responded fewer times to prompts if they
had received them in certain contexts where receptiveness to
interruptions is low. During such contexts, particularly if
engaged in a cognitively demanding activity, they may be less
likely to pay attention to notifications. In fact, the results from
the exploratory aim suggest that effects vary by time of the day
and day of the week. In general, the largest effect occurs when
the notification is pushed at 12:30 pm—users are 8.8% more
likely to chart in the next 24 hours. During the weekends, the
largest effects occur at 2 time points (12:30 pm and 7:30 pm).
Specifically at 12:30 pm on weekends, users are 11.8% more
likely to chart in the next 24 hours. The effect is similar at 7:30
pm on weekends. These findings suggest that sending push
notifications with contextually tailored messages over time,
particularly if sent during those contextual moments when users
are most receptive, can serve as an effective strategy to
maximize engagement with mHealth app interventions.

As this study population involved office workers, users who
are typically at work during weekdays, it is likely that they
responded more to weekend prompts because they were less
busy. This was suggested by the secondary analysis where the
effect of push notification versus no notification was estimated
to be somewhat larger on weekends than on weekdays. The
exploratory analysis suggests that on weekdays, effects are the
strongest at 12:30 pm, which coincides with the time office
workers generally have a lunch break. This is consistent with
previous research that suggests that engagement occurs more
during nonworking hours [39,40]. In summary, the findings
from this study suggest that push notification prompts hold
promise as an effective engagement strategy for mHealth apps,
and through contextual tailoring, further advancements can be
achieved in reducing user disengagement.

Tackling the problem of poor engagement is further
compounded by a lack of consensus on how to operationally
define engagement with an app-based health intervention.
Engagement has been typically operationalized in terms of
usability or usage of the intervention, along with the factors that
influence these [44]. Usage can refer to the frequency or the
duration of either interaction within the app, or the practice of
behavioral and cognitive strategies offered by the app in the
real environment. Under both scenarios, more usage, either
interacting with the app more often, or practicing behaviors and
cognitive strategies learned through the app more often, is
viewed as better engagement. This is based on the assumption
that more usage is closely related to better outcomes. However,
the relationship between usage and health outcomes is weak,
as supportive evidence is mostly anecdotal or correlational [45].
Instead, shifting the focus on effective engagement with the
digital intervention that may or may not require sustained usage
but that mediates positive behaviors is an emerging alternative
[46]. In published studies of different behavioral interventions,
self-monitoring is encouraged at a variety of frequencies (up to
multiple times per day) [2,12,47-49]. Evidence from these
studies suggests effective self-monitoring can result in a
profound positive impact on health outcomes. However, the
frequency of monitoring varies between individuals and over
time, and as a result, it is not evident how frequently users
should be encouraged to self-monitor. In fact, encouraging high
rates of tracking could potentially worsen stress and cause harm
[50]. Further work evaluating different self-monitoring
frequencies is needed.

There are several novel aspects and strengths to this study. First,
this study is designed to investigate the effect of tailored push
notifications (vs no notification) on immediate proximal
engagement with an mHealth app. Second, this research is
naturalistic, as the study did not pay users for study involvement
nor did it employ clinical staff who text, telephone, or otherwise
contact users to ensure that they stay engaged in the study. There
is no concept of dropout in this study. When individuals stop
using the app during the trial, their outcome is recorded as
disengaged in the analysis as opposed to being a dropout and
excluded from the analysis. Third, the use of the MRT design
to repeatedly randomize users over the course of the trial
allowed us to investigate the causal effects of push notifications
on proximal engagement and the real-time, real-world conditions
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that likely influence these proximal effects. In future, the MRT
approach can also be used to adjust the probability of
randomization to favor pushes in certain contexts. This
experimental approach, therefore, provides the empirical
evidence necessary to optimize engagement. Finally,
investigating engagement in a large sample of users with an app
that focuses on multiple health behaviors is another strength of
this study.

Study Limitations
Individual characteristics such as personality traits and
socioeconomic status (SES) are known to influence engagement
with mHealth apps, and controlling for these variables could
narrow the CIs to effects of time-varying push notifications.
Qualitative assessment of users’ experiences with push
notifications would have offered greater insights into
engagement, but as the study was constrained by data already
collected within the app, such measures were not available for
inclusion in our analysis. However, as noted earlier, randomizing
the decision to send a push notification at a point in time ensures
that within-user (eg, mood, location) and between-user (eg,
personality traits, SES) factors contributing to the day-to-day
variations in engagement are balanced across conditions.

Another limitation relates to the timescale used to define the
proximal outcome in this study. Specifically, the proximal
outcome was whether or not the individual engaged (ie,

completed charting) with the app within 24 hours. A more
sensitive proximal outcome measure might enable investigating
the more immediate effects of prompts on engagement,
potentially yielding larger effects than those observed in this
study. Within these limitations, this study provides a first step
to understanding whether and under what conditions push
notifications promote proximal engagement in mHealth.

Conclusions
Research into approaches for optimizing engagement with
mHealth interventions is warranted and potentially valuable to
the public’s health. Findings from this study suggest that push
notifications can indeed influence engagement with a health
app. Moreover, the results suggest that engagement effects are
sustained over time but that the effect is different across contexts
such as the time of day and day of week. On the basis of these
results, mobile app developers are advised to incorporate push
notifications as an engagement strategy and to pay attention to
when prompts are sent and the types of prompts that are sent.
Finally, the study offers an innovative trial design to optimize
push notification delivery in mHealth apps. This approach can
be incorporated into the structure of real-world apps.

Future research in this area should further investigate the
contexts in which users respond to prompts and to use designs
such as MRT to examine how various push-based interventions
influence engagement within these contexts.
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