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Abstract

Background: For rehabilitation training systems, it is essential to automatically record and recognize exercises, especially when
more than one type of exercise is performed without a predefined sequence. Most motion recognition methods are based on
feature engineering and machine learning algorithms. Time-domain and frequency-domain features are extracted from original
time series data collected by sensor nodes. For high-dimensional data, feature selection plays an important role in improving the
performance of motion recognition. Existing feature selection methods can be categorized into filter and wrapper methods.
Wrapper methods usually achieve better performance than filter methods; however, in most cases, they are computationally
intensive, and the feature subset obtained is usually optimized only for the specific learning algorithm.

Objective: This study aimed to provide a feature selection method for motion recognition of upper-limb exercises and improve
the recognition performance.

Methods: Motion data from 5 types of upper-limb exercises performed by 21 participants were collected by a customized inertial
measurement unit (IMU) node. A total of 60 time-domain and frequency-domain features were extracted from the original sensor
data. A hybrid feature selection method by combining filter and wrapper methods (FESCOM) was proposed to eliminate irrelevant
features for motion recognition of upper-limb exercises. In the filter stage, candidate features were first selected from the original
feature set according to the significance for motion recognition. In the wrapper stage, k-nearest neighbors (kNN), Naïve Bayes
(NB), and random forest (RF) were evaluated as the wrapping components to further refine the features from the candidate feature
set. The performance of the proposed FESCOM method was verified using experiments on motion recognition of upper-limb
exercises and compared with the traditional wrapper method.

Results: Using kNN, NB, and RF as the wrapping components, the classification error rates of the proposed FESCOM method
were 1.7%, 8.9%, and 7.4%, respectively, and the feature selection time in each iteration was 13 seconds, 71 seconds, and 541
seconds, respectively.

Conclusions: The experimental results demonstrated that, in the case of 5 motion types performed by 21 healthy participants,
the proposed FESCOM method using kNN and NB as the wrapping components achieved better recognition performance than
the traditional wrapper method. The FESCOM method dramatically reduces the search time in the feature selection process. The
results also demonstrated that the optimal number of features depends on the classifier. This approach serves to improve feature
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selection and classification algorithm selection for upper-limb motion recognition based on wearable sensor data, which can be
extended to motion recognition of more motion types and participants.

(JMIR Mhealth Uhealth 2021;9(9):e24402) doi: 10.2196/24402
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Introduction

Background
The combination of wearable devices and wireless network
technologies enables modern health care service providers to
ubiquitously monitor patients out of hospital who require
long-term exercise [1-3]. Motion recognition plays an important
role in maintaining the intensity and quality of autonomous
training with no or reduced supervision [4]. O'Brien et al [5]
investigated the performance of action recognition based on
signals collected by accelerometer, gyroscope, and barometer
sensors in a mobile phone in a home setting for stroke patients.
Zhang et al [6] proposed a fuzzy kernel motion classifier to
address the overlapping motion class issue caused by irregular
motion samples performed by patients with different functional
impairments. Cui et al [7] developed an automatic gait analysis
system for stroke patients based on multimodal fusion
architecture. Cai et al [8] investigated the feasibility of a support
vector machine (SVM) classifier for motion recognition of the
upper-limb exercises via surface electromyogram (sEMG)
signals [8]. Huang et al [9] proposed a knowledge-driven
multimodal activity recognition framework that exploits external
knowledge to fuse multimodal data.

Feature Selection in Motion Recognition
Most motion recognition methods are based on feature extraction
and machine learning algorithms [10]. Time-domain and
frequency-domain features are extracted from original time
series data [11,12]. Castiblanco et al [13] exploited myoelectric
signals (EMG) to identify finger and hand motions through
pattern recognition techniques. Several methods for feature
extraction, ranking, and classification from EMG signals were
implemented, and the performance of motion identification was
compared. Shawen et al [14] developed 4 classifiers that use
accelerometer and gyroscope data collected by mobile phone
from able-bodied individuals to detect falls in individuals with
a lower limb amputation. A set of 40 features was computed
from the original sensor data, and classifiers were trained to
detect falls. Lin et al [15] used 2 sensors on the arm and wrist
to collect acceleration and angular velocity of 6 types of
upper-limb exercises performed by 13 volunteers. Motor features
were used to train a back-propagation neural network (BPNN)
algorithm for motion recognition. Wu et al [16] developed a
method to identify upper-limb motion for community
rehabilitation. The feature vector space was established by
variance, mean absolute value, the fourth-order autoregressive,
zero crossings, and root mean square. Various feature sets were
extracted for classification.

Feature selection is an essential step to eliminate redundant or
irrelevant features for specific classification task so as to deal

with high-dimensional data [17,18]. Its task is to find the most
representative feature subset from the original feature set.
Ramezani et al [19] analyzed physical activity sensor features
and activities with regard to indoor localization. Random forest
(RF) was used to build a predictive model based on the most
significant features. The study demonstrated that a
subset of features can better distinguish between at-risk patients
that can gain independence versus patients that will be
rehospitalized. Wang et al [20] proposed 2 feature selection
methods to improve activity recognition. Experimental results
showed that the proposed methods reduce the dimensionality
of the original feature space and contribute to the enhancement
of overall recognition accuracy. Fang et al [21] compared feature
selection methods based on interclass distance for human
activity recognition in smart home environments. The
experimental results showed that activity recognition accuracy
is related to the feature set selected and an unsuitable feature
set increases computational complexity and degrades activity
recognition accuracy. Zhou et al [22] proposed a feature
selection method for human motion recognition based on open
human motion data. The experimental results showed that their
feature selection method yields better recognition accuracy than
nonfeature selection models.

Feature selection methods can be categorized into filter and
wrapper methods [23]. For filter methods, the selection of the
feature subset is independent of the classification algorithm.
The feature fitness is evaluated via the statistical characteristics
of the dataset, and the features with top ranking fitness are
selected [24,25]. Banos et al [26] proposed a feature selection
method for physical activity recognition using a feature quality
group ranking via statistical criteria based on discrimination
and robustness. Satisfactory results were achieved in both
laboratory and seminaturalistic activity living datasets for real
problems using several classification models. Hong et al [27]
proposed a motion gesture recognition system via accelerometer
(MGRA) implemented on mobile devices. The best feature
vector including 27 items was selected using the
minimal-redundancy-maximal-relevance criterion taking both
static and mobile scenarios into consideration. The experimental
results confirmed that MGRA can accommodate a broad set of
gesture variations within each class and achieve higher accuracy
than previous methods [28]. As for wrapper methods, the feature
subset is selected simultaneously with the estimation of its
goodness in a specific classification task [29,30]. Camargo and
Young [31] implemented motion classification from sEMG
signals for prosthetic control by exploiting Chow-Liu trees for
selecting features and evaluating 6 different classification
algorithms as the wrapping component [32]. The results
demonstrated that feature selection is critical for improving
classification accuracy. Xue et al [33] presented a novel wrapper
feature selection algorithm that utilizes a generic algorithm to
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wrap an extreme learning machine to search for the optimum
feature subset. Experiments were conducted on benchmark
datasets and compared with 4 filter methods and 2 hybrid
wrapper methods. The results revealed that the presented
wrapper method is useful for feature selection problems and
outperforms other algorithms in comparison. Chen and Chen
[34] introduced a wrapper method to eliminate irrelevant
features during classifier construction by introducing the cosine
distance into SVM. The feature selection method has been
applied to fault diagnosis of rolling element bearings and
diagnosis of mild cognitive impairment. The results showed
that the proposed method has great capacity for feature selection
and pattern recognition.

The Hybrid Feature Selection Method
Filter methods are often time-efficient, but the results are not
always satisfactory. On the other hand, wrapper methods usually
achieve better performance, but could be computationally
intensive and the obtained feature subset optimized only for the
specific learning algorithm [35]. As a result, hybrid feature
selection methods take advantages of both filter and wrapper
methods. Manbari et al [36] presented a hybrid feature selection
algorithm based on the combination of clustering and the
modified binary ant system to overcome the search space and
high-dimensional data processing challenges. A damped
mutation strategy was introduced to avoid local optima, and a
new redundancy reduction policy was adopted to estimate the
correlation between the selected features so as to further improve
the algorithm.

Existing feature selection methods usually select feature sets
that are relevant for specific classification tasks. To select the
most representative features for motion recognition of
upper-limb exercises, we propose a hybrid feature selection
method combining the filter and wrapper methods called
FESCOM in this paper. In the filter stage, candidate features
are selected by ranking the feature significance index, which
reflects the importance of each feature for motion recognition.
In the wrapper stage, a classifier-specific feature selection
algorithm is applied to further refine the candidate features.
Classifiers including kNN, NB, and RF are constructed as the
wrapping components. To the best of our knowledge, FESCOM
is the first method that exploits hybrid feature selection for
motion recognition of upper-limb exercises.

Methods

Workflow
The general workflow of this work is illustrated in Figure 1. An
inertial measurement unit (IMU) node was customized for
motion data collection. Motion data including acceleration and
angular velocity from 5 types of upper-limb exercises were
collected. Original data were preprocessed by applying a median
filter to remove outliers. Time-domain and frequency-domain
features were extracted from the preprocessed acceleration and
angular velocity data on each axis. The feature selection method
was built to select the most representative features for motion
recognition. Then, motion recognition was implemented using
the optimal feature set and corresponding classifier.

Figure 1. General workflow. FESCOM: hybrid feature selection method by combining filter and wrapper methods; IMU: inertial measurement unit.
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Construction of the IMU
The IMU module consists of 1 inertial sensor (MPU9250), 1
8-bit low power consumption micro-controller (ATmega328P
on board nano V3.0), 1 Bluetooth wireless transmitter (HC-06),
and 1 battery, shown in Figure 2. The inertial sensor MPU9250
is comprised of a 3-axis accelerometer, gyroscope, and
magnetometer. The built-in digital motion processing engine
in the MPU9250 can reduce the complex computation and load
of the microcontroller. The measurement ranges of the
accelerometer and gyroscope in the MPU9250 are ±16 g and
±2000 °/s, respectively, where g represents gravitational
acceleration. These specifications meet the needs of upper-limb
exercises. Sampled motion data can be transmitted to a PC
station by Bluetooth in real time. The battery is 3.7 V and 200

mAh. No recharge module is used. It is convenient for wearable
devices. The scale ranges of the accelerometer and the gyroscope
can be adjusted using the programming interface of the inertial
sensor and were set at ±2 g and ±250 °/s, respectively, in this
study. The sampling frequency was set at 20 Hz, which is
suitable for upper-limb exercises by patients with motion
functionality impairment. The baud rate of Bluetooth was set
at 19200 bps. Angular velocity was computed based on the
gyroscope data. Magnetometer data were not used in this study.
These components were connected and embedded into a 58 mm
x 32 mm x 19 mm box. The IMU node was attached to the
outside of the right upper limb of the participant with a
stretchable 350 mm x 38 mm rubber belt, shown in Figure 2.
The positive direction of the y-axis points to the wrist.

Figure 2. (A) inertial measurement unit (IMU) components, (B) box, and (C) belt.

Experimental Protocol
In this study, upper-limb exercises for post-stroke rehabilitation
training were considered. From the clinical point of view, a
subset of the training items can represent the 33 upper
limb–related training items in the Fygl-Meyer Assessment
(FMA) scale [37]. In this experiment, 5 representative
upper-limb exercises based on the FMA scale were selected:

1. Forearm pronation and supination: Raise the right arm to
the horizontal position in the sagittal plane. Then, carry out
forearm pronation and supination.

2. Lumbar touch: The right arm hangs naturally. Move the
right arm back to touch the back of the waist with the hand.
Then, slowly move back to the initial position.

3. Shoulder touch: The right arm hangs naturally. Raise the
right arm to the horizontal position in the sagittal plane.
Then, carry out an elbow adduction motion and rotate the
wrist to touch the opposite shoulder with the hand. Finally,
put the arm down to the initial position.

4. Shoulder flexion: The right arm hangs naturally. Raise the
right arm in the sagittal plane as high as possible. Then,
hold for 3 seconds and move back to the initial position.

5. Shoulder extension: The right arm hangs naturally. Raise
the right arm in the coronal plane as high as possible. Then,
hold for 3 seconds and move back to the initial position.

Figure 3 includes 5 photos of each exercise taken during the
execution process.

Motion data were collected from 21 healthy participants (15
men, 6 women; age, mean 33.2, SD 12.7 years; height, mean
172.5, SD 7.1 cm; weight, mean 62.8, SD 17.5 kg) instead of
actual patients who are post-stroke. The study was approved by
the institutional review board of the Eighth People’s Hospital
of Chengdu. Written informed consent was obtained from all
participants. In the sampling experiment, participants were first
asked to rest for a while. Before the sampling began, they were
invited to perform each exercise several times with the guidance
of a guiding video until they performed the motions fluidly.
Then, they were required to complete 3 valid repetitions of each
exercise independently. Each repetition followed an interval of
about 3 seconds. A valid repetition was a coherent movement,
and each repetition was completed in 1-4 seconds.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 9 | e24402 | p. 4https://mhealth.jmir.org/2021/9/e24402
(page number not for citation purposes)

Li et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Sequence of each exercise performed by the participants.

FESCOM Method
In this study, 10 types of time-domain and frequency-domain
features were extracted from the motion data from the
upper-limb exercises. The time-domain features included the
mean, standard deviation, maximum, and minimum values of
the signal as well as the kurtosis, skewness, and interquartile
range of the signal, which may reflect the exercise frequency,
regularity, and symmetry, respectively. The frequency-domain
features included average power, average frequency, and median
frequency of the signal. As each sample included acceleration
and angular velocity data in 3 axes, the dimension of the original
feature vector was 60.

The original feature set contains not only the features that are
relevant for classification but also some redundancy features,
which decrease the computational efficiency and classification
accuracy. We propose a hybrid feature selection method, called
FESCOM, to remove redundant features so as to improve the
computational efficiency and classification accuracy. Figure 4
shows the procedure of the FESCOM method. In the filter stage,
the statistical t test method was adopted to compute the statistical

significance value (P value) of each feature, reflecting the
capability of motion recognition [38,39]. For samples x and y,
a two-sample t test was considered for analysis, which is defined
as:

where   and   are the sample means, sx and sy are the sample
standard deviations, and n and m are the sample size. As there
are 5 types of motion, the t test method was applied to each
class pair. Let Pk(i,j) represent the P value of feature k on class
i and j, the average P value of feature k on all class pairs is
computed as:
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where i=1,…,C, j=i+1,…,C, and C is the number of motion
classes. The standard deviation of the P value of feature k on
all class pairs is:

Then, the significance index of feature k is computed as:

A smaller s value means stronger classification capacity. The
features with s smaller than a threshold were selected for the
candidate feature set, ranked in ascending order. The threshold
value was a compromise between time efficiency and the
classification accuracy of FESCOM.

Figure 4. The hybrid feature selection method by combining filter and wrapper methods (FESCOM).

In the wrapper stage, a sequential feature selection (SFS) method
was used to refine the features from the candidate feature set
obtained in the filter stage. SFS includes a search algorithm and
an objective function, also called criterion [40]. In this study,
the search algorithm was sequential forward selection, and the
criterion was the classification error rate. Starting from an empty

feature set, SFS selects a subset of features from the candidate
feature set by sequentially selecting features using the
abovementioned criterion until there is no improvement in
classification performance, evaluated by each classification
algorithm (ie, the wrapping component). The procedure of SFS
is illustrated as Figure 5.
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Figure 5. Sequential feature selection process.

Classification Algorithms
In the experiment, kNN, NB, and RF were adopted as
classification algorithms in the wrapper stage of FESCOM.

Classifier kNN is a simple classification algorithm based on the
calculation of the distance (usually the Euclidean distance)
between the new sample to be classified and the closest samples
in the training set. The training samples are sorted in descending
order according to their distance from the new object. Then, the
new sample is assigned to the class that most of its k-nearest
neighbors belong to [41].

NB is a probabilistic classifier based on the assumption that all
features are independent of each other, given the category
variable [42]. For discrete features, multinomial or Bernoulli
distributions are popular. Despite apparently over-simplifier
assumptions, NB classifier works quite well in many complex
real-world applications, such as medical diagnosis, key phrase
extraction, and text classification. The NB classifier is
particularly useful for handling incomplete data and could yield
good predictions even with a small data size.

RF is a type of ensemble learning method that is formed through
the combination of multiple decision trees trained on the training
dataset. When applied to the test dataset, the predictions of
individual tree models within the RF are combined into an
overall classification decision through means of a majority vote
or the application of weights. The RF model can avoid
overfitting and provide robust classification performances [43].
The number of decision trees in this experiment was set at 20.

Results

Overview
In this study, MATLAB 2016a was used to develop the proposed
FESCOM method for motion recognition of upper-limb
exercises. The original dataset was randomly partitioned into a
training set and testing set. The training set was applied to train
each classifier by using five-fold cross validation. For each
iteration, one of the partitions was held back as the validation
set, whereas the other partitions were used to train the
classification model. The model was then validated by the
validation set. This process was repeated 5 times, so that each
subset was used as a validation set once. The results were
averaged over all rounds. Finally, the performance of each
classifier was evaluated on the testing set.

The performance of the proposed algorithm was evaluated using
the metrics of classification error rate, computed as the ratio of
number of instances classified incorrectly to the total number
of instances.

Experimental Data
Acceleration and angular velocity in 3 axes of 5 exercises
performed by 1 female participant are illustrated in Figure 6
and Figure 7, respectively. Exe1, Exe2, Exe3, Exe4, and Exe5
in Figures 6 and 7 represent the 5 types of motion defined in
the experimental protocol section. The time-domain waveforms
of the 5 exercises showed different characteristics. For example,
the acceleration and angular velocity of forearm pronation and
supination, lumbar touch, and shoulder touch showed totally
different trends. Although the time-domain features of the
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acceleration in the y-axis of shoulder flexion were similar with
those of shoulder extension, the acceleration in the x-axis of
shoulder flexion exhibited a higher peak compared with that of
shoulder extension. Moreover, angular velocity in both the

x-axis and y-axis of shoulder flexion exhibited a smaller peak
than that of shoulder extension. These differences between
exercises can be used for motion recognition.

Figure 6. Acceleration in each axis of the 5 exercises.

Figure 7. Angular velocity in each axis of the 5 exercises.

Feature Significance Index
Table 1 shows the top-10 feature significance index value and
rank order computed by the statistical t test method. An extended
version of Table 1, including the significance index of all 60
features, is presented in Multimedia Appendix 1. The
significance index value was computed on 2 types of signals

(ie, acceleration and angular velocity), represented in
parentheses following the feature name, with a suffix
representing on which axis it is. The significance index value
of the minimum angular_velocity_y ranks the highest, whereas
the average acceleration_z ranks the lowest of all 60 features.
A smaller significance index means stronger classification
capacity.

Table 1. Top 10 feature significance index.

Rank orderSignificance indexFeature name

10.00030minimum (angular_velocity_y)

20.00035average power (angular_velocity_x)

30.00049average power (acceleration_x)

40.00058standard deviation (angular_velocity_z)

50.00130skewness (acceleration_z)

60.00132average power (acceleration_y)

70.00155median frequency (acceleration_y)

80.00174median frequency (angular_velocity_y)

90.00240maximum (angular_velocity_x)

100.00283standard deviation (angular_velocity_y)

Experimental Results
To analyze the impact of the feature number on the performance
of motion recognition of upper-limb exercises, experiments
were conducted on the training set including a different number
of features. The results of the classification error rate are shown

in Figure 8. The general trends for the 3 classifiers are similar.
With an increase in feature number, the classification error rate
decreases rapidly. With a further increase in feature number,
the classification error rate shows an increasing trend. The trend
for kNN is not as stable as that of NB and RF. For kNN, there
are several local optima with an increase in feature number.
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Figure 8. Classification error rate vs feature number. kNN: k-nearest neighbor; NB: Naïve Bayes; RF: random forest.

Table 2 shows the optimal number of features for the different
classifiers. There is an obvious distinction between the optimal
number of features for the different classifiers. Classifier kNN

needs more features to achieve the minimum classification error
rate than classifiers NB and RF.

Table 2. Optimal number of features.

Optimal number of featuresClassifier

33kNNa

13NBb

18RFc

akNN: k-nearest neighbor.
bNB: Naïve Bayes.
cRF: random forest.

As wrapper methods usually achieve better classification
performance than filter methods, and until now, there has been
no hybrid feature selection method for motion recognition of
rehabilitation exercises, we compared the motion recognition
performance of the proposed FESCOM method with the
traditional wrapper method. Experiments were conducted on
the testing set by selecting the optimal feature set. For the
traditional wrapper method, SFS was used to search for the
optimal feature set from all 60 original features. For FESCOM,
SFS was used to refine the features from the candidate feature

set, composed of features with a significance index value smaller
than 0.05 and ranked in ascending order. The criterion to set
the threshold of the significance index was an assumption that
the number of candidate features increased 30% (10 out of 33
features) from the highest optimal number of features in Table
2. The classification error rate is shown in Table 3. For both
feature selection methods, the classification performance of
kNN was better than that of NB and RF. The classification error
rate of FESCOM using kNN and NB as the wrapping component
was lower than the corresponding wrapper methods.
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Table 3. Classification error rate.

Classification error rate (%)Feature selection method

RFcNBbkNNa

6.713.42.2Wrapper

7.48.91.7FESCOMd

akNN: k-nearest neighbor.
bNB: Naïve Bayes.
cRF: random forest.
dFESCOM: hybrid feature selection method by combining filter and wrapper methods.

The time consumed on feature selection in each iteration for
both feature selection methods is listed in Table 4. As the
candidate feature set of FESCOM is smaller than that of the
wrapper method, the search time for FESCOM was much less

than that of the wrapper method for all classifiers. For the same
feature selection method, kNN needs much less search time
than NB and RF.

Table 4. Search time for each iteration.

Search time (seconds)Feature selection method

RFcNBbkNNa

87615923Wrapper

5417113FESCOMd

akNN: k-nearest neighbor.
bNB: Naïve Bayes.
cRF: random forest.
dFESCOM: hybrid feature selection method by combining filter and wrapper methods.

Discussion

Principal Findings
This paper presents a hybrid feature selection method for motion
recognition of upper-limb exercises. For motion recognition
based on feature extraction and feature selection, the feature set
used for the classification algorithm had a direct impact on the
performance of classification. The experimental results in this
study verified that recognition performance depends on the
feature set. For all 3 classifiers in this study, the same trends
existed: The classification error rate decreased to an optimum
value when the number of features increased and increased with
a further increase in feature number due to overfitting. The
optimal number of features depended on the classifier. The
optimal numbers of features for classifiers kNN, NB, and RF
were 33, 13, and 18, respectively.

Each feature contributes differently to the motion classification
task. Take the proposed FESCOM method as an example: The
frequency-domain features contribute more than other features
to recognition performance. When using the classifier kNN as
the wrapping component, the top 3 significant features for
motion recognition were average power of angular_velocity_x,
average acceleration_x, and mean frequency of
angular_velocity_x. When using the classifier NB as the
wrapping component, the top 3 significant features for motion
recognition were average power of acceleration_x, standard
deviation of acceleration_y, and kurtosis of angular_velocity_x.

When using the classifier RF as the wrapping component, the
top 3 significant features for motion recognition were average
power of angular_velocity_x, average power of acceleration_y,
and mean frequency of angular_velocity_y.

Motion recognition performance also depends on the classifier.
For both feature selection methods, the classification
performance of kNN was the best, while NB was the worst
classification performance. The proposed FESCOM method
reduces the feature space and improves the time efficiency by
filtering irrelevant features for motion classification.

Comparison With Previous Works
The common methods for motion recognition combine wearable
sensing techniques and machine learning algorithms.
Acceleration, angular velocity, or sEMG signals collected by
wearable sensors are used to represent the motion characteristics.
Cai et al [8] exploited sEMG signals and the SVM classifier for
motion recognition of upper-limb exercises; 5 healthy
participants participated in the experiments. The average
recognition accuracy of 5 motions was 93.34%. Motion
recognition of upper-limb exercises in [15] was based on
acceleration, angular velocity data, and BPNN algorithm; 13
volunteers participated in the experiments. Five upper-limb
exercises involving simple swinging and stretching movements
were recognized with an accuracy of 85%-95%, while exercises
consisting of spiral rotations were recognized with an accuracy
of 60%. The knowledge-driven activity recognition method in
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[9] focused on egocentric video and accelerometer/gyroscope
data. Experiments were conducted on 3 public datasets, with a
best recognition accuracy of 76.1%.

Using kNN, NB, and RF as the wrapping components, the
recognition performance of FESCOM in this study achieved
98.3%, 91.1%, and 92.6%, respectively. Compared with
previous studies on upper-limb motion recognition, the
recognition performance of FESCOM is at the same level or
even better than that in previous works. Time efficiency is one
of the main concerns especially in real-time applications, such
as motion recognition in autonomous rehabilitation systems.
However, previous works seldom considered time efficiency.
The FESCOM method in this study reduced the feature space
and improved the time efficiency by filtering irrelevant features
for motion classification. Compared with the search time of the
traditional wrapper method, the search time of FESCOM using
kNN, NB, and RF classifiers as the wrapping component
reduced the search time by 43% (from 23 seconds to 13
seconds), 55% (from 159 seconds to 71 seconds), and 38%
(from 876 seconds to 541 seconds), respectively. Hence, this
study contributes by evaluating the number and types of features
for different classification algorithms that achieve acceptable
performance for motion recognition of upper-limb exercises.

Limitations
The FESCOM method proposed in this study has some
limitations. It was only evaluated based on data from 21 healthy
participants, and only 5 types of upper-limb exercises were
considered in the experiments. However, the behavior of patients
with a central nervous system lesion, such as that caused by
stroke, may be very different from that of healthy participants.
The experimental results may be different in such cases. The
number of samples for training and testing is not high enough
for machine learning algorithms, which may also affect the
reliability. The customized IMU module in this work is just a

prototype. The components in the sensor node are connected
with cables. This may lead to unreliable connections, especially
when used in movement conditions. Another drawback is that
the validation of the system did not use real-time exercise
examples.

In our future work, to further confirm the feasibility of
FESCOM, we plan to extend our experiment considering the
following aspects. First, we will evaluate and compare the
performance of different methods in the filter and wrapper stage
of FESCOM. Second, we will evaluate the performance of
FESCOM considering more classifiers as the wrapping
component in the wrapper stage, such as SVM and latent
Dirichlet allocation. Third, we will evaluate the performance
of FESCOM on more datasets, such as public datasets including
more motion types and datasets including not only healthy
participants but also real patients with different functional
impairments in the recovery stage in a clinical situation. Fourth,
we plan to improve the IMU node as an embedded system on
a circuit board for real-time data collection and validate the
whole system by real-time prediction of upper-limb exercises.

Conclusions
In this study, a hybrid feature selection method, FESCOM, was
proposed for motion recognition of upper-limb exercises and
evaluated using 5 types of upper-limb exercises performed by
21 healthy participants. The experimental results demonstrate
that FESCOM is feasible for motion recognition of upper-limb
exercises performed by healthy participants. FESCOM improves
the recognition accuracy when using kNN and NB as the
wrapping component and improves the time efficiency in the
wrapper stage. The results also demonstrate that, for different
classifiers, different feature sets are selected to achieve optimal
performance. This work can be extended to provide motion
recognition of more motion types and participants including
healthy people and actual patients with minor motor damage.
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