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Abstract
Background: Cardiovascular diseases (CVD) are the leading cause of death and disability worldwide, and their prevention
is a major public health priority. Detecting health issues early and assessing risk levels can significantly improve the chances
of reducing mortality. Mobile apps can help estimate and manage CVD risks by providing users with personalized feedback,
education, and motivation. Incorporating visual analysis into apps is an effective method for educating society. However, the
usability evaluation and inclusion of visualization of these apps are often unclear and variable.
Objective: The primary objective of this study is to review and compare the usability of existing apps designed to estimate
CVD risk using the mHealth App Usability Questionnaire (MAUQ). This is not a traditional usability study involving user
interaction design, but rather an assessment of how effectively these applications meet usability standards as defined by the
MAUQ.
Methods: First, we used predefined criteria to review 16 out of 2238 apps to estimate CVD risk in the Google Play Store and
the Apple App Store. Based on the apps’ characteristics (ie, developed for health care professionals or patient use) and their
functions (single or multiple CVD risk calculators), we conducted a descriptive analysis. Then we also compared the usability
of existing apps using the MAUQ and calculated the agreement among 3 expert raters.
Results: Most apps used the Framingham Risk Score (8/16, 50%) and Atherosclerotic Cardiovascular Disease Risk (7/16,
44%) prognostic models to estimate CVD risk. The app with the highest overall MAUQ score was the MDCalc Medical
Calculator (mean 6.76, SD 0.25), and the lowest overall MAUQ score was obtained for the CardioRisk Calculator (mean 3.96,
SD 0.21). The app with the highest overall MAUQ score in the “ease-of-use” domain was the MDCalc Medical Calculator
(mean 7, SD 0); in the domain “interface and satisfaction,” it was the MDCalc Medical Calculator (mean 6.67, SD 0.33); and
in the domain “usefulness,” it was the ASCVD Risk Estimator Plus (mean 6.80, SD 0.32).
Conclusions: We found that the Framingham Risk Score is the most widely used prognostic model in apps for estimating
CVD risk. The “ease-of-use” domain received the highest ratings. While more than half of the apps were suitable for both
health care professionals and patients, only a few offered sophisticated visualizations for assessing CVD risk. Less than a
quarter of the apps included visualizations, and those that did were single calculators. Our analysis of apps showed that they
are an appropriate tool for estimating CVD risk.
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Introduction
The major cause of death worldwide is cardiovascular
diseases (CVD). The prevalence of CVDs has increased
globally due to factors such as obesity, poor nutrition,
hypertension, and the incidence of type 2 diabetes [1,2].
CVDs still affect more than half a billion people world-
wide, causing 20.5 million deaths in 2021, which is almost
a third of all deaths worldwide [3]. The approach to
preventing CVD morbidity is to reduce and control risk
factors through lifestyle changes and medication. Early
detection and risk stratification further augment the chan-
ces of reducing mortality [4,5]. Many prognostic models
have been developed in recent decades that assess the risk
of CVDs [6,7], for example, the Framingham Heart Score
for the American population [8,9], SCORE2 (Systematic
Coronary Risk Evaluation 2) for European populations [10],
QRISK (Cardiovascular Risk Score) for the British popula-
tion [11-13], and artificial intelligence (AI)-based prediction
model’s [14] and others.

The rise of IT, such as mobile health (mHealth) tools, can
make health care more accessible because of the integration
of many prognostic models. It has been shown they can be
used to reduce the risk of CVDs [6,15-17], improve glyce-
mic control [18,19], control elevated blood pressure [20,21],
contribute to the reduction in hospital admissions as part
of cardiac rehabilitation [17,22], and also eHealth informa-
tion exchange could give patients, who are from rural areas
or have mobility problems, access to their health data –
including the ability to capture and aggregate multiple sources
of clinical data for performance measurement [23,24].

Growing research evidence supports the effectiveness of
mobile apps for the prevention of CVDs [25-34]. Raising
public awareness of various health issues can lead to the
implementation of preventive measures [35]. The guidelines
[36] state that, in general, visual aids (eg, graphs or images
presenting the risk estimation) improve the understanding
of risk and are more understandable than providing infor-
mation in the form of numbers intended to improve results
[35-38]. There is currently no official app or computer-based
valid screening test that a health professional can use to
show patients their health status through images [39]. Visual
analytics enables efficient analysis and understanding of large
datasets in real time [40]. Visual analysis, which is incorpora-
ted in apps, is an effective technique for educating society.
The results of measures can be presented to help adults
increase motivation and successfully change their behavior or
lifestyle [28,34]. So, the results of measures can be presented
to help adults increase motivation and successfully change
their behavior or lifestyle [28,34].

The objective of this study is to review and compare the
usability of existing estimations of CVD risk apps using
the mHealth App Usability Questionnaire (MAUQ). Rather
than focusing on traditional usability aspects related to user

interaction design, this study assesses how effectively these
apps adhere to usability standards as defined by the MAUQ.

Methods
This review used quantitative research methodology to review
and compare the usability of existing estimations of CVD risk
apps.
Systematic Review of Apps for
Estimation of CVD Risk
In March 2023, we reviewed apps for estimating CVD risk
available in the Google Play Store [41] using the Samsung
Galaxy Tab S6 Lite and Samsung Galaxy S8+ with Android
operating systems. In addition, we reviewed apps in the Apple
App Store [42] using the iPhone 13 Pro Max and iPad Pro
(3rd generation) with iOS operating systems. The review of
the apps was conducted by two researchers separately from
each other. To ensure consistency, any discrepancies between
the two reviewers were resolved through discussion and
consultation with a third reviewer. Search strings including
“CVD”, “CVD risk calculator”, “cardiovascular diseases”,
and “cardiovascular risk” were used for searching the apps
suitable for evaluation. According to the PRISMA (Prefer-
red Reporting Items for Systematic Reviews and Meta-Anal-
yses)(Checklist 1) [43] flow diagram, we searched for apps
and excluded or included them based on their title, icon, and
description in the app store.

The coding process categorized key aspects from all apps,
names, and website links from each web store were man-
ually transferred into Excel spreadsheets. The next step was
to open and analyze each app on distribution platforms by
looking into their titles, icons, screenshots or videos, and
descriptions. Apps were included in the following steps if
the title of the app is referenced to prognostic models for
estimating CVD risk; the icon of the app represents some
information about a possible way of estimating CVD risk; if
the screenshots or video of the app gives an inside look at
questions or results of prognostic models for estimation of
the CVDs risk; if the description in the software platform
provides information or references to a prognostic model for
estimating CVD risk. Each relevant app was downloaded on
a mobile phone or tablet in the final step. We have inclu-
ded free apps in the English language for various software
platforms and their sections (Medical, Health and Wellness,
Health and Fitness, etc), which estimate CVD risk and can
be used either for personal (eg, estimating individual CVD
risk in home environments) or for professional (eg, assessing
patient CVD risk in clinical settings) purposes. Whether the
app was developed for health care professionals or patients
was determined according to the manufacturer’s intended use.
Apps were excluded in case of duplicates (from the search
string and distribution platforms), non-English language,
technical issues, paid apps, and apps not related to estimating
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CVD risk and having different purposes (games, quizzes,
journals, etc).

We also categorized apps according to whether they
were single calculators containing one prognostic model for
estimating CVD risk or multi-calculators containing more
than one prognostic model for estimating CVD risk, as
done by Fijačko et al [44]. Results were summarized with
means and SDs. We also calculated the intraclass correlation
coefficient (ICC2,k, intraclass correlation coefficient, 2-way
random, average measures, and absolute agreement) [45-47].
Evaluating the Usability of Apps for
Estimation of CVD Risk
To measure the usability of existing apps designed to estimate
CVD risk, we used the MAUQ [48]. MAUQ responses
can be aggregated into (1) “Ease of Use” (8 items), (2)
“Interface and Satisfaction” (6 items), and (3) “Usefulness”
domains (7 items). All responses to the evaluating ques-
tions use a Likert scale, rated on a scale of 1-7 and
higher scores mean better usability. The apps were evalu-
ated by 3 experts with experience in health care informat-
ics. The intraclass correlation coefficient (ICC2,k, intraclass
correlation coefficient, 2-way random, average measures, and
absolute agreement) [45-47] was calculated to represent the
agreement of the app ratings.
Statistical Analysis
Statistical analyses were conducted in October and Novem-
ber, 2023. Continuous variables were analyzed according to
their Gaussian distribution and reported as mean with SD or
95% CI, whichever was appropriate. The data were analyzed
using the SPSS statistical package version 29.0.0 (IBM Corp).

Results
App Selection
We identified a total of 2238 apps across both platforms. In
the Google Play Store, we found 176 apps using the tablet

and 376 apps using the phone. In the Apple App Store, we
identified 802 apps on the tablet and 884 apps on the phone.
In the next step, duplicates were removed (1175/2238, 53%),
leaving 1063 apps for review. Then we excluded apps for
several reasons: they were not available for free (10/1063,
1%), had inappropriate icons or names (280/1063, 26%), were
game based (520/1063, 47%), had inappropriate descrip-
tions (179/1063, 17%), or were not available in English
(7/1063, 1%). This process narrowed the selection to 67 apps
for further review. In the second phase, we installed and
examined these 67 apps in detail, ultimately excluding those
with incorrect content (49/67, 76%) and technical inadequacy
(2/67, 3%). Incorrect content was identified based on criteria
such as lack of evidence-based information, incompleteness,
or lack of personalization features tailored to individual user
profiles. Apps that did not provide a prognostic model for the
estimation of risk or did not include critical risk factors (eg,
blood pressure, cholesterol levels) were also considered poor
content. Technical shortcomings were identified by several
key factors, including app stability (frequent crashes or failure
to load), usability problems (difficult navigation, nonintuitive
interface), and compatibility problems (apps that did not work
properly across different devices or operating systems). Apps
with outdated or nonfunctional features were also excluded,
as were those that caused security problems (eg, lack of data
encryption for sensitive user information). As these factors
have a significant impact on the reliability and user experi-
ence of apps, they were crucial in our elimination process.

A total of 16 apps remained for analysis (Figure 1 [43]).
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Figure 1. PRISMA flow diagram of the selection of included apps.

More characteristics of apps related to usability are presented
in Multimedia Appendix 1.

Out of the 16 apps reviewed, 7 (44%) were compatible
with both iOS and Android operating systems. Specifically,
4/16 (25%) apps were compatible with iOS, and 5/16 (31%)
were compatible with Android. Compatibility refers to the
ability of the apps to function on the respective operating
systems without technical issues. Most of the apps (12/16,
75%) were designed for use by health care professionals in
clinical settings as well as by individuals in home environ-
ments. A few apps (3/16, 19%) specifically indicated that
they were intended for clinical use by health care profes-
sionals, including CV Risk Estimation, MediCalc (ScyMed,
Inc), and CardioExpert I (Farid Belialov). In addition, one
app (1/16, 6%), the Indigenous CVD Risk Calculator (An

Tran Duy), was explicitly designed for use by individuals in
home environments. The estimated results for CVD risk in
apps were visualized in three formats across the apps: text,
numerical, and graphical. Most apps (12/16, 75%) visual-
ized results in both textual and numerical form. A smaller
portion (4/16, 25%) presented CVD risk estimates in all
3 formats—text, numerical, and graphical—specifically in
the following apps: ESC CVD Risk Calculation (European
Society of Cardiology), Epi-RxlSK (University of Alberta),
Cardiovascular Risk Calculator (www Machealth Pty Ltd),
and Heartcare Lite (Heartcare Lite; Multimedia Appendix
2). All apps with graphical visualization were designed for
use by health care professionals and patients (Table 1 and
Multimedia Appendix 2).

Table 1. Descriptive characteristics of apps.

Name of apps MOSa
Single (Sb) or multi-calculators
(Mc)

Determination of use by
developers (Hd and Ie)

Visualization form of
the cardiovascular disease
(CVD) risk results

ESC CVD Risk Calculation ANDf and iOSg M H/I Text, numerical, graphical
CardioCal AND and iOS S H/I Text, numerical
CardioRisk Calculator AND and iOS S H/I Text, numerical
ASCVDj Risk Estimator Plus AND and iOS S H/I Text, numerical
MediCalc AND and iOS M H Text, numerical
MDCalc Medical Calculator AND and iOS M H/I Text, numerical
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Name of apps MOSa
Single (Sb) or multi-calculators
(Mc)

Determination of use by
developers (Hd and Ie)

Visualization form of
the cardiovascular disease
(CVD) risk results

Calculate by QxMD AND and iOS M H/I Text, numerical
CV Risk Estimation iOS M H Text, numerical
Indigenous CVD Risk
Calculator

iOS S I Text, numerical

Cardiovasculator Risk
Calculator

iOS S H/I Text, numerical, graphical

Epi-RxlSK iOS S H/I Text, numerical, graphical
Heartcare Lite AND S H/I Text, numerical, graphical
Framingham Score Heart Age AND S H/I Text, numerical
WHOhand ISHi Cardiovascular
risk prediction charts

AND S H/I Text, numerical

CardioExpert I AND S H Text, numerical
ASCVDj Risk AND S H/I Text, numerical

aMOS: mobile operating system.
bS: single calculator.
cM: multi-calculator.
dH: health professionals.
eI: individuals.
fAND: operation system for Android smartphones.
giOS: Operation system for Apple smartphones.
hWHO: World Health Organization.
iISH: International Society of Hypertension.
jASCVD: atherosclerotic cardiovascular disease.

The reviewed apps feature 8 distinct prognostic models for
estimating CVD risk, with the most common in all apps
being the Framingham Risk Score (8/16, 50%), followed by
the Atherosclerotic Cardiovascular Disease Risk model (7/16,
44%). Of the apps, 11/16 (69%) are single calculators using
one prognostic model, while 5/16 (31%) are multi-calcula-
tors that incorporate multiple models. The multi-calculator
app with the highest number of distinct prognostic models
for estimating CVD risk was ESC CVD Risk Calculation,
featuring 4 models (Table 2).
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Empirical Evaluation of Estimation of
CVD Risk Apps
The overall average MAUQ score for all the apps was 5.6/7
(95% CI 4.33‐5.78). The app with the highest overall MAUQ
score was MDCalc Medical Calculator 6.76 (0.25), followed
by Heartcare Lite 6.58 (0.12), ASCVD Risk Estimator Plus
6.57 (0.18), ESC CVD Risk Calculation 6.11 (0.35), and
Framingham Score Heart Age 6.03 (0.24). The app with the
lowest MAUQ score was CardioRisk Calculator, 3.96 (0.21).

The “ease of use” domain had the highest overall average
score across all domains (mean 6.20, SD 0.51). The apps
with the highest overall MAUQ scores for ease of use were
MDCalc Medical Calculator (mean 7, SD 0), followed by
ESC CVD Risk Calculation (mean 6.92, SD 0.29), CardioCal
(mean 6.73, SD 0.63), and Heartcare Lite (mean 6.60, SD
0.58). The lowest score in this domain was recorded for the
CardioRisk Calculator (mean 5.27, SD 1.32).

The “interface and satisfaction” domain had the second
highest overall average score (mean 5.25, SD 0.93). MDCalc
Medical Calculator achieved the highest MAUQ score in
this domain (mean 6.67, SD 0.33), followed by Heartcare
Lite (mean 6.48, SD 0.79) and ASCVD Risk Estimator Plus
(mean 6.24, SD 0.44). The lowest score in the “interface and
satisfaction” domain was recorded by CardioRisk Calculator
(mean 3.19, SD 1.13).

The “usefulness” domain received the lowest overall
average score (mean 5.17, SD 1.13). The highest scores in
this domain were achieved by ASCVD Risk Estimator Plus
(mean 6.8, SD 0.32), followed by Heartcare Lite (mean 6.67,
SD 0.58), MDCalc Medical Calculator (mean 6.60, SD 0.48),
and Framingham Score Heart Age (mean 6, SD 0.32). The
lowest score was recorded by MediCalc (mean 3.33, SD 0.47)
(Table 3).

Table 3. mHealth App Usability Questionnaire mean scores.

Apps for estimating cardiovascular disease (CVD) risk
Ease of use, mean
(SD)

Interface and satisfaction,
mean (SD)

Usefulness, mean
(SD)

Overall, mean
(SD)a

ESC CVD Risk Calculation 6.92 (0.29) 5.95 (0.94) 5.47 (0.84) 6.11 (0.35)
CardioCal 6.73 (0.63) 5.48 (0.50) 4.07 (0.96) 5.43 (0.24)
CardioRisk Calculator 5.27 (1.32) 3.19 (1.13) 3.43 (0.89) 3.96 (0.21)
ASCVDb Risk Estimator Plus 6.67 (0.67) 6.24 (0.44) 6.80 (0.32) 6.57 (0.18)
MediCalc 5.73 (0.75) 4.29 (0.81) 3.33 (0.47) 4.45 (0.18)
MDCalc Medical Calculator 7.00 (0.00) 6.67 (0.33) 6.60 (0.48) 6.76 (0.25)
Calculate by QxMD 6.47 (0.26) 5.62 (0.37) 4.93 (1.11) 5.67 (0.46)
CV Risk Estimation 5.60 (0.95) 4.29 (0.58) 3.60 (0.41) 4.50 (0.42)
Indigenous CVD Risk Calculator 5.80 (0.63) 4.24 (0.49) 4.33 (0.52) 4.79 (0.08)
Cardiovasculator Risk Calculator 6.07 (0.86) 5.24 (0.50) 5.33 (0.54) 5.55 (0.20)
Epi-RxlSK 6.13 (0.48) 5.52 (0.57) 5.8 (1.62) 5.82 (0.64)
Heartcare Lite 6.6 (0.58) 6.48 (0.79) 6.67 (0.58) 6.58 (0.12)
Framingham Score Heart Age 6.33 (0.52) 5.76 (0.80) 6 (0.32) 6.03 (0.24)
WHOc and ISHd Cardiovascular risk prediction charts 6.2 (0.58) 4.57 (0.80) 5.20 (0.42) 5.32 (0.19)
CardioExpert I 5.93 (0.45) 5.19 (0.35) 5.53 (0.71) 5.55 (0.18)
ASCVDb Risk 5.73 (0.44) 5.29 (0.52) 5.6 (0.40) 5.54 (0.06)
Average score 6.2 (0.51) 5.25 (0.93) 5.17 (1.13) 5.60 (0.27)

aFor the overall MAUQ score, we calculated reviewers inter-rater reliability using ICC, which showed excellent reliability (ICC2,k 0.87; 95% CI
0.80‐0.91).
bASCVD: atherosclerotic cardiovascular disease.
cWHO: World Health Organization.
dISH: International Society of Hypertension.

Discussion
Principal Findings
Our review presented that apps for prognostic CVD risk
estimation were available for both Android and iOS smart-
phones, designed for use by both health care professionals
and patients. The most popular apps were single-calcula-
tor tools, each using only one CVD prognostic model. In
contrast, the MAUQ highest-rated app, MDCalc Medical
Calculator, offered access to multiple prognostic models, with

the Framingham Risk Score being the most widely represen-
ted CVD prognostic model.

All apps were average quality, each achieving a high
overall MAUQ score. In particular, the ’ease-of-use’ domain
received the highest scores. More than half of the apps can
be used by health care professionals or patients, but only
a few offer more sophisticated visualizations for assessing
estimation of CVD risk. Less than a quarter of apps inclu-
ded visualization. The apps that did include visualization
were single calculators. In this article, we found considerable
variation in the usability of apps for estimation of CVD risk,
highlighting areas where developers can focus on improving
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the user experience. These findings are key to guide future
improvements of mHealth, in terms of accessibility, user
satisfaction, and overall functionality.
Empirical Evaluation of Estimation of
CVD Risk Apps
Our study assessed the effectiveness of these apps meeting
usability standards as defined by the MAUQ of various
apps designed to estimate CVD risk. Our findings revealed
that most of the apps were predominantly characterized
by positive feedback across multiple MAUQ questionnaire
domains. In particular, the “ease-of-use” domain indicates
a high level of practical acceptance and usability of the
apps. Other studies have shown that the use of technology
can promote shared decision-making by enabling health care
professionals to manage chronic conditions [26,49-51]. The
MAUQ evaluation tool has been used by several authors in
different areas of health care. From ophthalmology (Aus-
tralia) [52] to fitness (Malay) [53], breast cancer (German)
[54], chatbot for reaching a patient (China) [55] etc. We
also believe apps are an effective way to communicate the
complex concept of clinical trials to patients and should
also be incorporated in education curricula [37,56,57]. Based
on the results, it can be concluded that the apps with the
highest MAUQ scores are suitable for use by both health
care professionals and patients. Rowland, et al [58] claim
that despite the current limitations of diagnostic apps, there
is a huge potential, and evidence is starting to emerge to
demonstrate clinically significant improvements in morbidity
and mortality outcomes in specific scenarios.
Forms of CVD Risk Score Presented in
Apps
Recently, there has been a growing interest in the use of
visualization in digital humanities, which extends the way
we interact with traditional information visualization methods
and guides analytical processes. The main goal is to incorpo-
rate user feedback to improve automated analysis [59-63]. In
our study, a few apps, such as ESC CVD Risk Calculation,
Epi-RxlSK, Cardiovascular Risk Calculator, and Heartcare
Lite, featured a visual risk display that helped to understand
the risks of CVD to patients in a comprehensible manner.
The Zolezzi et al [64] article also reported that participants
found the EPI-RXISK app (University of Alberta) visually
appealing, with a professional layout and use of simple
technology. Visualization offers new capabilities to analyze
health care systems and support better decision-making and
patient motivation, but on the other hand, the presence of
visualization does not automatically guarantee good usability,
and an app without advanced visualization can still provide a
good user experience [57,65,66].

From our review of various apps, it is evident that most
patient-oriented apps incorporate visualization. Typically,
these are single-function calculators and are predominantly
available for free. Conversely, apps aimed at CVD risk
estimation can assist patients in modifying risk factors and
lifestyle habits, improving medication adherence, quality of
life, and psychosocial well-being, and are associated with

better outcomes in managing CVD risk factors [67,68] and
lead to increased adherence to primary prevention strategies
and reduced health care costs [69,70]. For health care
professionals, the priority is to obtain results quickly and
have access to multiple prognostic models and calculators
within a single app [71-74]. Consequently, apps designed
for estimating CVD risk not only deliver crucial informa-
tion but also provide educational resources and guidance to
health care professionals. They help with prevention, raise
awareness, and encourage control of risk factors [71,72].
In addition, apps for estimation of CVD risk employing
visualization to display data can increase patient motivation
[73,74].
Suggestions for Future Research
Electronic health record (EHR) systems are a digital
representation of a patient’s paper-based medical documen-
tation. They have emerged in recent years as a promising
avenue for advancing clinical research [75-77]. In a recent
study, the authors examined differences in improvements
in hypertension guideline implementation using standard
EHRs and EHRs that incorporated the use of apps with
visual analytics dashboards for the estimation of CVD risk.
They found that incorporating a specific app’s dashboard
into EHRs has the potential to reduce the time and
improve the implementation of hypertension guidelines
[78]. The integration of apps with prognostic models
for estimation of CVD risk directly into EHRs promises
to be a valuable advancement for health care professio-
nals [79-81]. This integration would allow the immedi-
ate estimation of CVD risk at the point of patient data
entry, simplifying the process compared to using separate
apps [82,83]. This efficiency could increase the effective-
ness and quality of care management of CVD preven-
tion strategies [84]. However, thorough evaluation and
clinical testing are essential before apps can be seamlessly
integrated into EHR systems and used in hospitals. In
hospitals where the standard EHRs lack the capability to
automatically calculate patient health risks, transitioning
to EHRs with integrated apps with prognostic models
would represent a substantial improvement in health care
efficiency and accuracy. Even more, in the research by the
author Serbanati [85] and other studies, they integrated AI
into the EHRs and created an intelligent agent that acts as
an avatar of the individual’s health. This agent collabo-
rates with health care professionals, provides information
on all aspects of an individual’s health, proactively offers
solutions, and helps them diagnose and decide on the right
treatment [79,86].

Apps for estimation of CVD risk should be designed based
on prognostic models for effective use in health care. Other
studies conclude that the Framingham Risk Score is the most
widely used prognostic model for the estimation of CVD risk.
We also found out that the most used prognostic model in
analyzed apps was the Framingham Risk Score, and no AI
prognostic models were used in any of the apps [49-51,87].
The authors of the review article reference findings indicating
that 50% of their studies have already incorporated prognostic
models for estimating CVD risk, developed using AI [88].
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Estimation of CVD risk using AI in general and CVDs
prediction specifically is becoming increasingly common,
but it is crucial to ask critical questions before using these
prognostic models [89].
Limitations
Our study also has a few limitations. The first limitation
is that we excluded paid apps, so we may have missed
some quality apps that are maybe connected to EHRs or
had prognostic models made by AI. The second limitation
is that we focused only on usability and the inclusion of
visualization in apps; we did not focus on other contextual
analyses of the data, such as app usage in countries with
the same Gross Domestic Product (GDP), apps for different
races, disability levels, and so on. The latter could be a target
for further research. The third limitation of the study is the
apps industry, which is changing so rapidly that this type
of review of apps is limited in time reliability. The fourth
limitation is the number of MAUQ reviewers in this study
and the representativeness of the target users’ evaluators. The
future of integrating apps for estimation of CVD risk and
EHR in the field of prevention of CVDs is very promising.
Data collected through EHRs, apps, wearables, and remote
monitoring systems will enable health care organizations to

identify trends, risk factors, and patterns in cardiovascular
outcomes [90].
Conclusions
We presented the current state of apps for the estimation
of CVD risk. We found that the most common prognostic
model used in these apps was the Framingham Risk Score
and that most of the apps were easy to use, indicating a high
level of user satisfaction and acceptance. We discussed the
benefits and challenges of using apps for the estimation of
CVD risk in hospital settings by health care professionals or
in home environments by patients. We suggested that apps
for estimation of CVD risk be integrated into EHRs or other
systems supported by health authorities to simplify the task of
community risk estimation and improve the implementation
of CVD prevention. However, we also acknowledged the
need for further evaluation and testing of apps for estima-
tion of CVD risk and prognostic models in clinical practice
before they can be widely adopted and used in the hospital
setting. We also argued that apps for estimation of CVD risk
could provide patients valuable information, education, and
guidance for prevention, as well as help modify risk factors
and lifestyle habits, improve medication adherence, quality of
life and psychosocial well-being, and reduce health care costs.
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